ТРОМБОЛТИЧЕСКАЯ ТЕРАПИЯ ПРИ ИШЕМИЧЕСКОМ ИНСУЛЬТЕ

МЕТОДИЧЕСКОЕ ПОСОБИЕ

Москва 2010
Учреждение-разработчик:
Научно-исследовательский институт цереброваскулярной патологии и инсульта
ГОУ ВПО РГМУ им. Н.И. Пирогова

Под редакцией:
Члена-корреспондента РАМН, профессора В.И. Скворцовой

Авторский коллектив:
Ю.Д. Вольнский — доктор медицинских наук, профессор
Л.В. Губский — доктор медицинских наук, профессор
В.Г. Лелюк — доктор медицинских наук, профессор
Н.А. Шамадов — кандидат медицинских наук, доцент
Г.Р. Рамазанов — кандидат медицинских наук, ассистент
К.В. Апсисимов — врач-невролог
М.Г. Кириллов — врач-рентгенолог

Предисловие:
для врачей неврологов, реаниматологов, рентгенологов, рентгенологов, врачей ультразвуковой и функциональной диагностики.

Содержание
Введение .. 4
Результаты исследований эффективности тромболитической терапии при ишемическом инсульте 4
Классификация, механизм действия фибринолитических препаратов ... 14
Показания и противопоказания к проведению тромболитической терапии ... 14
Методика проведения системной тромболитической терапии .. 16
Методика проведения селективной внутриarterиальной и комбинированной тромболитической терапии 17
Ведение больных после тромболитической терапии ... 18
Сопутствующая терапия .. 19
Запрещенные препараты ... 19
Осложнения тромболитической терапии, их диагностика и лечение ... 20
Методы нейровизуализации при проведении тромболитической терапии .. 20
Исключение внутрисосудистых кровоизлияний как противопоказания к проведению тромболитической терапии ... 21
Ранние КТ признаки ишемического инсульта .. 23
Ранние МРТ признаки ишемического инсульта .. 26
КТ и МР- перфузия и ангиография ... 26
Ультразвуковое «сопровождение» в остром периоде ишемического инсульта .. 27
Приложение 1: Шкала инсульта Национального института здоровья (NIH) .. 32
Приложение 2: Приказ Минздравсоцразвития России № 389н от 6 июля 2009 г. «Об утверждении порядка оказания медицинской помощи больным с острыми нарушениями мозгового кровообращения» .. 38
Порядок оказания медицинской помощи больным с острыми нарушениями мозгового кровообращения 39
Положение об организации деятельности неврологического отделения для больных с острыми нарушениями мозгового кровообращения ... 43
Литература .. 57
Введение

Церебральный инсульт занимает второе место по частоте смертельных случаев от болезней системы кровообращения в Российской Федерации. Ежегодная смертность от инсульта в России — одна из наиболее высоких в мире (175 случаев на 100 тыс. населения в год). Ранняя 30-дневная летальность после инсульта составляет 34,6%, а в течение года умирают около 50% больных, т.е. каждый второй после инсульта.

Инсульт является лидерующей причиной инвалидизации населения. По данным регистра Национальной ассоциации по борьбе с инсультом, 31% пациентов, перенесших инсульт, требуют постоянной помощи для ухода за собой, 20% не могут самостоятельно ходить. Лишь 8% выживших после инсульта могут вернуться к прежней работе. Инсульт накладывает особые обязательства на членов семьи больного, значительно сжигая их потенциал.

Международный опыт показывает, что снижение смертности населения от сердечно-сосудистых заболеваний достигается в результате реализации координированного комплекса мер, основными из которых являются повышение информированности населения о факторах риска сосудистых заболеваний и их профилактике, внедрение эффективных профилактических программ и совершенствование системы медицинской помощи при инсульте.

В соответствии с постановлениями Правительства Российской Федерации от 27 декабря 2007 г. № 1012 и от 2 марта 2009 г. № 186 в нашей стране начата реализация мероприятий, направленных на совершенствование медицинской помощи больным с сосудистыми заболеваниями. В составе региональных сосудистых центров и первичных сосудистых отделений созданы подразделения для лечения больных с острыми нарушениями мозгового кровообращения (ОНМК). Разработан и утвержден приказом Министерства здравоохранения и социального развития Российской Федерации от 6 июля 2009 г. № 389н порядок оказания медицинской помощи больным с ОНМК (приложение 2). В рамках указанных мероприятий в отделениях для лечения больных с ОНМК внедряются современные методы диагностики, лечения, реабилитации и вторичной профилактики инсульта, в том числе — тромболитическая терапия.

Результаты исследований эффективности тромболитической терапии при ишемическом инсульте

Новые подходы к лечению ишемического инсульта включают применение современных высокоэффективных методов реперфузии вещества головного мозга в первые часы заболевания, направленных на восстановление кровотока в пораженном сосуде, что позволяет предотвратить развитие необратимого повреждения вещества головного мозга либо уменьшить его объем, т.е. минимизировать степень выраженности остаточного неврологического дефицита.

Согласно рекомендациям Европейской инсультной организации (ESO) (класс доказательности 1, уровень А) и Американской инсультной ассоциации (ASA) (класс доказательности 1, уровень В), система тромболитической терапии с использованием рекомбинантного тканевого активатора плазминогена (т-PA) является наиболее эффективным и безопасным методом реперфузии крови при ишемическом инсульте в первые 4,5 часа от начала развития симптоматики [1, 2].
Исследование NINDS (National Institute of Neurological Disorders and Stroke) было первым рандомизированным плацебо-контролируемым исследованием, доказавшим безопасность и эффективность системной тромболитической терапии при помощи rt-PA в первые три часа от начала развития заболевания. Вероятность отсутствия нарушений инсульта или сохранения минимальных рассстройств спустя 3 месяца после инсульта была, как минимум, на 30% выше у пациентов, получавших rt-PA, чем у больных, получавших плацебо. Несмотря на увеличение частоты симптоматической геморрагической трансформации у пациентов, получивших rt-PA, по сравнению с больными, получившими плацебо (6,4% против 0,6%; p = 0,001), достижение этой разницы уровня значимости было не в 1,72; по мнению (от 4,5 до 6 часов) — тромболизис был неэффективен (ОШ 1,04; 95% ДИ 0,84 — 1,29). Таким образом, были созданы предпосылки для проведения следующего Европейского кооперативного исследования остого инсульта (ЕСКАС III) [7].

В исследовании ECASS III [8] была доказана безопасность и эффективность системного тромболизиса в пределах 4,5 часов от начала развития симптоматики. Исследование показало, что применение rt-PA в сроки до 4,5 часов от начала заболевания улучшает коэффициент уменьшения временных функциональных исходов по сравнению с плацебо (52,4% против 45,2%; ОШ 1,34; 95% ДИ, от 1,0 до 1,65; p < 0,05). Частота развития внутричерепных кровоизлияний была значительно выше у получивших rt-PA, по сравнению с таковыми, получившими плацебо (27,0% против 17,6%; p = 0,001); частота развития симптоматических внутричерепных кровоизлияний также была выше у получивших rt-PA в сравнении с плацебо (2,4% против 0,2%; p = 0,008). По частоте развития лёгочных исходов различий между группами rt-PA и плацебо выявлено не было (7,7% против 8,4%; p = 0,68).

Основываясь на результатах данного исследования, был осуществлен пересмотр Европейских и Американских рекомендаций по лечению ишемического инсульта с усилением продолжительности терапевтического окна до 4,5 часов [1, 2], однако в инструкцию к препарату атеплес не соответствие изменения пока не внесены.

Исследования (MAST-I, MAST-E, AST), в которых для проведения тромболизиса при инсульте использовалась стрептомицин, были остановлены досрочно из-за высокой частоты развития симптоматической геморрагической трансформации [9 — 11].

Изучение другого фибринолитика, полученного из слоновой музы (десмоплазы), более фибринспецифичного и менее нейротоксического по сравнению с rt-PA, проводилось в исследованиях DEDAS [12], DIAS II [13] и DIAS II [14]. Десмоплаза вводилась в период от 3 до 9 часов от начала заболевания при выявлении области перфузии-диффузного несоответствия (DWI-PWI mismatch) на МРТ головного мозга перед началом лечения. Первая часть исследования DIAS I, в которой пациенты получили 25, 37,5 или 50 мг препарата либо плацебо, была досрочно остановлена из-за высокой частоты симптоматических внутричерепных кровоизлияний в группе десмоплазы (26,7%). Во второй части исследования использовались меньшие дозы препарата (62,5 мкг/кг; 90 мкг/кг и 125 мкг/кг), что привело к значительному снижению частоты симптоматической геморрагической трансформации (2,2%). Реканализация в группе, получавшей десмоплазу (125 мкг/кг), наблюдалась в 71,4% случаев, в то время как в группе плацебо только в 19,2% случаев (p = 0,0012). Благоприятные исходы заболевания к 90 дню в группе плацебо были выявлены у 22,2% пациентов и в 13,3% при применении дозы 62,5 мкг/кг (p = 0,757); у 60,0% при введении дозы 125 мкг/кг (p = 0,0009) больных в основной группе. Таким образом, было показано, что применение десмоплазы в ограниченном промежутке от 3 до 9 часов от начала развития ишемического инсульта у пациентов с верифицированным методом МРТ перфузии-диффузного несоответствия ассоциируется с большей частотой реканализации и хорошими клиническими исходами заболевания по сравнению с группой плацебо.

В исследовании DEDAS [12], в которое было включено 37 пациентов, больные получали десмоплазу в дозе 90 или 125 мкг/кг либо плацебо. Обязательным критерием включения также было наличие на МРТ головного мозга перфузии-диффузного несоответствия. Реканализация наблюдалась у 37,5% пациентов.
получивших плацебо, у 18,2% пациентов, получивших десмопелазу в дозе 90 мкг/кг и у 53,3% пациентов, получивших данный препарат в дозе 125 мкг/кг.

Однако при дальнейшем исследовании десмопелазы в рамках рандомизированного плацебо-контролируемого исследования DIAST [14] небыли подтверждены безопасность и эффективность данного фибринолитика. В исследование было включено 186 пациентов с ишемическим инсультом в пределах 9 часов от начала развития симптоматики. Больные, включенные в исследование, были рандомизированы в три группы и получали либо десмопелазу в дозе 95 мкг/кг (57 человек), либо 125 мкг/кг (66 лиц) или плацебо (63 больных). Благоприятные клинические исходы заболевания к 90 дню в группах больных, получивших десмопелазу в дозе 95 мкг/кг и 125 мкг/кг, наблюдались у 47% (27) и 36% (24) пациентов соответственно. В группе плацебо благоприятные клинические исходы к 90 дню заболевания выявлялись у 46% (29) пациентов. Частота симптоматических внутривенных кровоизлияний при использовании десмопелазы в дозах 95 мкг/кг и 125 мкг/кг составила 3,5% и 4,5% соответственно. В группе плацебо данное осложнение не наблюдалось ни у одного пациента.

Таким образом, в настоящее время rt-PA является единственным препаратом с доказанной безопасностью и эффективностью при ишемическом инсульте.

В настоящее время продолжается включение пациентов в многоцентровое рандомизированное плацебо-контролируемое исследование IST III [15], которое является наиболее крупным из всех проводившихся по тромболизису при ишемическом инсульте. Сейчас численность включенных лиц составляет около 1600 человек (планируется до 6000 больных). Целью исследования является определение безопасности и эффективности системной тромболитической терапии при помощи rt-PA при ишемическом инсульте в сроки до 6 часов от начала развития симптоматики. Результаты исследования планируется обобщить в 2010 году.

Внутривенное введение rt-PA и других фибринолитиков изучалось в ряде исследований, таких как PROACT [16], EMS [17], IMS [18], IMS II [19] (Таблица 2).

<table>
<thead>
<tr>
<th>Исследование</th>
<th>Количество пациентов</th>
<th>Симптомная геморрагическая трансформация</th>
<th>Летальность через 3 месяца</th>
<th>Хороший функциональный исход</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROACT II (r-pro-UK, 6 мг/в/в со скоростью 30 мл/час в течение 120 минут. Терапевтическое окно — 6 часов.</td>
<td>40</td>
<td>r-pro-UK — 15,4%, плацебо — 7,1%</td>
<td>25%</td>
<td>40%</td>
</tr>
<tr>
<td>EMS (rt-PA в/в 0,6 мг/кг, затем 11,1 мг/кг, либо плацебо +11,1 мг rt-PA в/в). Терапевтическое окно — 6 часов.</td>
<td>35</td>
<td>в/в+в/а 11,7%, в/а 11,1%</td>
<td>29%</td>
<td>5,5%</td>
</tr>
</tbody>
</table>

Первым исследованием, доказавшим эффективность и безопасность внутривенной тромболитической терапии при ишемическом инсульте, было двойное слепое рандомизированное плацебо-контролируемое исследование PROACT [16], в котором активатор плазминогена (рекомбинантная прокоумиказа, r-pro-UK) вводился внутривенно пациентам с ишемическим инсультом в первые 6 часов от начала развития заболевания. В исследование было включено 40 больных с ишемическим инсультом с ангиографическими подтвержденными окклюзиями проксиимального сегмента СМА (M1 или M2 сегменты). Симптоматические внутривенные кровоизлияния в основной группе зарегистрированы в 15,4% случаев и в 7,1% случаев в группе плацебо. Частичная или полная реканализация в течение 120 минут от начала терапии была достигнута в группе лиц, получавших рекомбинантную прокоумиказу, в 15 из 26 случаев (57,7%), в группе плацебо — только в 2 из 14 (14,3%). По данным ангиографии у 5 пациентов основной группы была достигнута полная реканализация, в то время как в группе плацебо ее не удалось добиться ни в одном случае. Исследование показало, что частота реканализаций в основной группе была выше, чем в группе плацебо; статистически значимых межгрупповых различий по частоте геморрагических трансформаций, явившихся причиной неврологического ухудшения, выявлено не было. На основании этого было констатировано, что внутривенное введение рекомбинантной прокоумиказы при ишемическом инсульте в течение 6 часов от начала симптоматики, является эффективным и безопасным методом лечения.

В нерандомизированном исследовании IMS [18], в которое было включено 80 пациентов, оценивалась безопасность и эффективность комбинированной тромболитической терапии. Летальность в течение 90 дней после ее проведения составила 16% и была значительно более низкой, чем в группе плацебо (24%) и сопоставимой с соответствующим показателем, полученным в основной группе (17%) исследования NINDS. Симптоматические внутривенные кровоизлияния наблюдались в 6,3% случаев, что также оказалось сопоставимым с данными исследования NINDS, где подобное осложнение регистрировалось в 6,6% случаев. У лиц, включенных в исследование IMS, отмечалось большее количество благоприятных исходов, в сравнении с группой плацебо в исследовании NINDS. Летальность и частота развития симптоматических внутривенных кровоизлияний в исследовании IMS (16,0% и 6,3% соответственно) были сопоставимы с таковыми в исследовании NINDS (17,0% и 6,4% соответственно).

С целью дальнейшего изучения безопасности комбинированного тромболизиса при ишемическом инсульте было проведено открытое сравнительное нерандомизированное исследование IMS II [19], в которое было включено 81 больной. Трехмесячный уровень летальности в этом исследовании составил 16%. Частота симптоматических внутривенных кровоизлияний (9,5%) оказалась сопоставимой с таковой в ходе исследований NINDS (6,6%). Было показано, что в результате комбинированного применения тромболизиса в большинстве случаев наблюдается хорошее восстановление (в сравнении с основной группой исследования NINDS). Целью продолжалось в настоящее время исследование IMS III [20] является сравнение эффективности комбинированной тромболитической терапии и системного тромболизиса, до 2012 г. планируется включить 900 пациентов.

Метаанализ 27 исследований [21], в которых оценивалась эффективность и безопасность внутривертебрального тромболизиса, подтвердил, что в группе тромболитической терапии чаще, по сравнению с плацебо, отмечались лучшие функциональные исходы (41,5 против 23% соответственно). И хотя частота симптоматических внутривертебральных кровоизлияний в группе тромболизиса была выше (9,5% — основная группа, 3% — группа плацебо), летальность продемонстрировала обратный результат (40% в группе плацебо, 27,2% в группе ТЛТ).

Впервые в Российской Федерации методы системного и селективного внутривертебрального тромболизиса были внедрены в клинике НИИ инсульта Российской государственного медицинского университета на базе ГКБ №31 в 2005 — 2006 гг. [22, 23]. Метод тромболитической терапии был одобрен Федеральной службой по надзору в сфере здравоохранения и социального развития как новая медицинская технология (разрешение на применение новой медицинской технологии ФС №2008/169 от 01.08.2008 г.). С 2008 года тромболизис является неотъемлемой частью оказания медицинской помощи больным с инсультом в условиях первичных сосудистых отделений и региональных сосудистых центров, созданных в рамках реализации комплекса мероприятий по снижению смертности от сосудистых заболеваний.

С целью изучения безопасности и эффективности внедрения метода тромболитической терапии в Российской Федерации Научно-исследовательским институтом цереброваскулярной патологии и инсульта ГОУ ВПО РГМУ Росздрава им. Н.И. Пирогова было проведено анкетирование, в котором тромболизис применяется в клинической практике.

Формализованная анкета включала: 1) демографические данные о пациентах, которым выполнялись ТЛТ (пол, возраст), 2) временные показатели — время от начала заболевания до поступления в стационар (который косвенно может характеризовать качество оказания медицинской помощи на догоспитальном этапе), время от поступления в стационар до начала проведения ТЛТ ("врея от двери до игры"), 3) клинические данные — выраженность неврологического дефицита по шкале инсульта NIH (при поступлении, через 2 и 24 часа после проведения ТЛТ), патогенетический вариант инсульта в соответствии с критериями TOAST, степень функционального исхода по модифицированной шкале Ринккина через 30 дней и 3 месяца от начала заболевания; 4) результаты КТ-исследования: до ТЛТ и спустя через 24 часа с определением ранних КТ-признаков ишемического повреждения и, в случае развития геморрагической трансформации, ее тип в соответствии с критериями ЕКАСС; 5) факт выполнения УЗ методов диагностики (ДС, УЗДГ, ТКГД) до ТЛТ, во время ее проведения и после. Показатель летальности регистрировался на 30 сутки и через 3 месяца. Симптоматическую геморрагическую трансформацию определяли в соответствии с критериями ЕКАСС 3 как любое кровоизлияние сопровождающееся увеличением балла по шкале NIHSS на 4 балла или выше от исходного уровня или наименьшего уровня в первые 7 дней, либо любое кровоизлияние, закончившееся смертельным исходом. Кроме того, кровоизлияние должно быть идентифицировано как основная причина неврологического ухудшения.

Информация о 691 пациенте, которым проводилась ТЛТ, была получена из 48 лечебных учреждений, 35 (52,9%) из которых были созданы в рамках Комплекса мероприятий. Основные характеристики больных представлены в таблице 3. Средний возраст больных составил 61,8 ± 10,9 лет (от 21 до 83 лет), мужчин было 442 (63,9%), женщин 249 (36,1%). Средний балл по шкале NIH при поступлении был 14,1 ± 5,3, что свидетельствует о достаточно тяжелой степени выраженного неврологического дефицита, и колебался от 3 до 26 баллов. В 625 (90,4%) случаях выполнялась системная ТЛТ, у 38 (5,5%) больных — селективный тромболизис и в 28 (4,1%) случаях отмечалась комбинация данных методик (системная + селективная или селективная + ревмоболэктомия).

Таблица 3. Демографические и базисные характеристики пациентов по результатам анкетирования.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Данные анкетирования</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество больных</td>
<td>691 (100%)</td>
</tr>
<tr>
<td>Пол:</td>
<td></td>
</tr>
<tr>
<td>— мужской</td>
<td>442 (63,9%)</td>
</tr>
<tr>
<td>— женский</td>
<td>249 (36,1%)</td>
</tr>
<tr>
<td>Средний возраст, годы</td>
<td>61,8 ± 10,9</td>
</tr>
<tr>
<td>Средний балл по шкале инсульта NIH при поступлении</td>
<td>14,1 ± 5,3</td>
</tr>
</tbody>
</table>
Ранние КТ-признаки ишемического повреждения (гиподенсивность размером менее 1/3 бассейна васкулизации средней мозговой артерии, отсутствие контраста между серым и белым веществом, утрата ретикулярной структуры островка, сглаженность рисунка Борода и ивзии) при поступлении были выявлены у 367 (53,1%) больных.

Показатель 30-дневной летальности составил 17,1% (118 человек), через 3 месяца было зарегистрировано 126 (18,2%) летальных исходов.

У подавляющего большинства пациентов (326 человек, 76,2%) не наблюдалось формирования геморрагической трансформации при повторном КТ-исследовании, через 24 часа после проведения ТЛТ ее развитие (как симптомной, так и асимптомной) отмечалось у 165 (23,8%) больных. В группе больных с ГТ у 86 (12,5%) пациентов наблюдалось формирование ГТ по типу геморрагического инфаркта (ГИ) 1-го типа, у 34 (4,8%) — ГИ 2-го типа, 2,3% (16 лиц) — по типу паренхиматозной гематомы (ПГ) 1-го типа, у 25 (3,6%) человек ПГ 2-го типа, и у 4 (0,6%) — ПГ на отдалении от очага ишемического повреждения головного мозга.

Симптомная ГТ, связанная с клиническим ухудшением и сопровождающаяся увеличением балла по шкале NIH на 4 и более, была диагностирована у 43 человек (6,2%). Таким образом, у 122 (17,6%) больных внутривененные геморрагии были симптомными и выявлялись только при последующей нейровизуализации.

Регресс неврологического дефицита к концу первых суток заболевания, сопровождавшийся уменьшением суммарного балла по шкале NIH, был выявлен у 518 (74,9%) человек. Значительное клиническое улучшение, определяемое по уменьшению балла по NIH ≥ 4 через 24 часа после начала заболевания, отмечалось у 138 (19,9%) больных, причем в 30 (4,3%) случаях наблюдался полный регресс неврологического дефицита до 0 баллов по данной шкале. У 96 (13,9%) пациентов тромболизис был неэффективен.

Через 3 месяца от начала заболевания хороший уровень функционального восстановления (0 или 1 балл по модифицированной шкале Ранкина) отмечался у 336 (48,6%) пациентов, что свидетельствовало о полной независимости от окружающей среды (Уровнь Функционального исхода 2 или 3 балла) был зафиксирован у 132 (19,1%) человек и в 97 (14%) случаях выявлено полное восстановление нарушенных неврологических функций (4 или 5 баллов).

Настоящее исследование, впервые проведенное на территории Российской Федерации, позволило получить достоверную информацию о результатах внедрения метода тромболизиса терапии при ишемическом инсульте в различных областях нашей страны. Данные относительно безопасности и эффективности, полученные в ходе анкетирования, в целом сопоставимы с результатами крупных многоцентровых рандомизированных исследований, и в частности внедрения метода ТЛТ в клиническую практику за рубежом.

Уровень 3-х месячной летальности (18,2%) в нашем исследовании был несколько выше, чем в исследовании ECASS III и регистре SITS-MOST (11,3% и 7,7%, соответственно). Возможно, подобные различия можно объяснить исходо более тяжелым неврологическим дефицитом у больных в нашем исследовании, что не могло не отразиться на уровне летальности (14,1 баллов по шкале инсульта NIH по сравнению с 10,7 баллами в исследовании ECASS III и 12 баллами в SITS-MOST). Косвенным образом это подтверждается сходными с нашими данными северо-американского исследования NINDS, в котором уровень летальности через 3 месяца был зарегистрирован на уровне 17%, а суммарный балл по шкале NIH при поступлении составил 4. Частота и структура типов геморрагической трансформации, в том числе и сопровождавшейся клиническим ухудшением, при проведении тромболизиса в центрах Российской Федерации была сопоставима с данными зарубежных исследований (таблица 1).

Таким образом, новые технологии реперфузионной терапии в первые часы ишемического инсульта активно внедряются в нашей стране, качественно изменения подходы к ведению больных и достоверно улучшая исходы заболевания, обусловливая снижение летальности и высокодостоверное увеличение числа лиц с хорошим восстановлением нарушенных неврологических функций.
Классификация, механизм действия фибринолитических препаратов

Существует 5 поколений фибринолитиков [24]:
1. Поколение — системные тромболитики: природные активаторы плазминогена (斯特ептокиназа, фибринолизин);
2. Поколение — фибриннеселективные тромболитики: рекомбинантный тканевой активатор плазминогена (т-PA, алтеплаза);
3. Поколение — усовершенствованные формы t-PA (тенектиплаза), рекомбинантный проксиразин и другие активаторы плазминогена;
4. Поколение — усовершенствованные активаторы плазминогена III поколения (биосинтетические);
5. Поколение — композиции тромболитиков (т-PA + конъюгат «урокиназа — плазминоген» и др.).

Механизм действия альтеплазы подобен действию естественного тканевого активатора плазминогена (т-PA). Он является сериновой протеазой, которая в присутствии фибриназы катализирует превращение плазминогена в плазмин.

Альтеплаза при инфузионом введении в системный кровоток относительно неактивна; препарат имеет низкое сродство к плазминогену, но высокую аффинность к фибрину, и поэтому быстро связывается с любым имеющимся густым кровью. После связывания с фибринным аффинность препарата к плазминогену заметно увеличивается, и плазминоген быстро превращается в плазмин, что обусловливает высокоеэффективный местный фибринолиз и лишь ограниченное системное действие. После применения альтеплазы в дозе 100 мг уровень циркулирующего фибриногена снижается на 16 — 36%. Альтеплаза быстро выводится из циркулирующей плазмы, скорость этого процесса составляет 380 — 570 мл/мин. В течение 5 минут выходит более 50% альтеплазы, а в течение 10 минут — около 80%. Клиренс осуществляется, главным образом, печенью.

Показания и противопоказания к проведению тромболитической терапии

Показания
1. Возраст больных от 18 до 80 лет.
2. Верифицированный диагноз инсульт.
3. Время не более 3 часов от начала заболевания до начала тромболизиса.
4. Отсутствие значительного клинического улучшения перед началом тромболизиса.

Противопоказания
1. Наличие признаков внутримозгового кровоизлияния при КТ-исследовании.
2. Более 3 часов от начала заболевания до возможности проведения тромболизиса или более 6 часов, если их условие в течение времени лечения неизвестно (включая больных, у которых инсульт случился во время сна).
3. Малый неврологический дефицит или значительное клиническое улучшение перед началом терапии.
4. Тяжелый инсульт (клинически — более 25 баллов по шкале NIHSS или по данным нейровизуализации).
5. Судорожный припадок в дебюте инсульта.
6. Клинические признаки субаракцидального кровоизлияния, даже если нет данных за него при КТМР исследованиях.
7. Применение гепарина в предшествующие 48 часов до инсульта и значения тромбоэластического времени, превышающие нормальные значения.
8. Больные с любым инсультом в анамнезе и сопутствующим сахарным диабетом.
9. Перенесенная инсульта в течение последних 3 месяцев.
10. Количество тромбоцитов менее 100 000/мм.
11. Систолическое артериальное давление более 185 мм рт. ст. или диастолическое давление более 105 мм рт. ст. или необходимость снижения АД до этого уровня с применением внутривенного введения гипотензивных препаратов.
12. Гиперемия менее 2,8 или более 22,5 ммоль/л.
13. Диагностированный геморрагический диатез.
14. Больные, получающие или сверхдоходной антикоагулянты, такие как варфарин.
15. Недавнее или проявляющееся выраженные кровотечение.
16. Подозрение на субаракцидальное кровоизлияние или состояние после САК вследствие разрыва аневризмы.
17. Заболевания ЦНС в анамнезе: опухоль, аневризма, состояния после оперативных вмешательств на головном или спинном мозге любой давности.
18. Геморрагическая ретинопатия, например при сахарном диабете (нарушение зрения могут указывать на геморрагическую ретинопатию).
19. Недавний (менее чем в течение 10 дней) перенесенный нарушаемый массаж сердца, акушерское родовспоможение, состояние после похорон центральных (некомплементных) вен.
20. Бактериальный эндокардит, перикардит.
21. Острый панкреатит.
22. Документально подтвержденные обострения язвенной болезни желудка и 12-ти перстной кишки в течение последних 3 месяцев, эрозии пищевода.
23. Артериальные аневризмы, артерно-венозные мальформации.
24. Опухоли с высоким риском кровотечения.
25. Тяжелые заболевания печени, включая гепатит, цирроз печени, печеночную непроходимость, портальную гипертензию, варикозное расширение вен пищевода.
26. Сердечно-сосудистого вмешательства или тяжелая травма в течение последних 3 месяцев.
27. Подозрение на расслоение аорты.
28. Беременность.
Методика проведения системной тромболитической терапии

Тромболитическая терапия при ишемическом инсульте должна проводиться в стационарах скорой медицинской помощи, в условиях блока интенсивной терапии и реанимации при условии обязательного наличия и в их структуре круглосуточных служб — нейрорадиологической (компьютерной или магнитно-резонансной томографии) и лабораторной диагностики. Тромболизис может проводиться лишь после исключения геморрагического характера поражения мозга.

Необходимо максимально стремиться к сокращению времени от момента поступления пациента в стационар до начала введения тромболитика (время от двери до иглы, door-to-needle time). Согласно международным рекомендациям [1], это время не должно превышать 60 минут.

При поступлении больного с симптомами инсульта необходимо:
1. Осмотр неврологом и сбор анамнеза, оценка жизненно важных функций и неврологического статуса по общепринятым методикам с исследованием общемозговых, менингеальных и очаговых симптомов. Также необходимо проведение обследования с использованием шкалы инсульта NIH (см. Приложение 1), позволяющей количественно отразить степень выраженности неврологического дефицита. При суммарном балле более 25 по шкале NIH фибринолитическая терапия противопоказана.
2. Безотлагательное проведение компьютерной томографии головного мозга.
3. Измерение уровня артериального давления на обеих руках.
4. Установка кубитального периферического венозного катетера.
5. Измерение уровня глюкозы в сыворотке крови.
6. Забор крови и выполнение следующих лабораторных анализов:
 a) количество тромбоцитов;
 b) активированное частичное тромбопластиновое время (АЧТВ);
 c) международное нормализованное отношение (МНО).

При проведении тромболитической терапии в блоке интенсивной терапии необходимо обеспечить в течение как минимум 24 часов мониторирование следующих жизненно важных функций:
1) уровень артериального давления (АД);
2) частоты сердечных сокращений (ЧСС);
3) частоты дыхательных движений (ЧД);
4) температуры тела;
5) насыщения кислородом (SaO2).

Введение тромболитика должно быть начато как можно раньше. Рекомендуемая доза алтразава — 0,9 мг/кг массы тела (максимальная доза — 90 мг); 10% дозы вводится в виде болюса внутривенно струйно в течение 1 минуты, а оставшаяся часть (90%) — внутривенно капельно в течение 1 часа. При проведении процедуры фибринолиза не следует одновременно вводить другие препараты.

Методика проведения селективной внутриартериальной и комбинированной тромболитической терапии

Наиболее радикальным подходом к лечению острого ишемического инсульта является разрабатываемый в настоящий момент метод селективной внутриартериальной тромболизиса. Он базируется на возможностях и технологических преимуществах периферальной ангиографии, с помощью которой осуществляются не только диагностические исследования, но и различные рентгеноконтрастные вмешательства на сосудах мозга.

Селективный тромболизис является методом выбора в тех случаях, когда фибринолитическая терапия может быть начата в период от 3 до 6 часов от начала заболевания при каротидном ишемическом инсульте и до 9—12 часов при окклюзии основной артерии, а также в ситуациях, когда системный тромболизис оказывается неэффективным (не наблюдается клинического улучшения к концу его проведения).

Противопоказания для проведения селективного тромболизиса аналогичны таковым для системной ТЛТ.

Церебральная ангиография выполняется в условиях рентгеноперационной, оснащенной специализированным рентгеновским комплексом (ангиографом). Вначале по методике Сельдингера (посредством чрескожной пункции артерии, без разреза кожи и подлежащих тканей) производится катетеризация бедренной артерии. В случаях, когда подобный доступ невозможен или ограничен, может быть осуществлена пункция с последующей катетеризацией лучевой артерии. Под контролем рентгеноконтрастного катетера проводится в нужную плечо-головную артерию, обычно одну из сонных, и в ёё просвет автоматическим шприцем вводится йодсодержащее рентгеноконтрастное вещество, желательно неопное (омнипак, визинап, ультравиолет, оптимер). Получаемые при помощи позиционной рентгеновской спирографии изображения позволяют с высокой точностью визуализировать просветы основных сосудов мозга. Помимо этого, динамическая оценка содержания контрастного вещества в капиллярную фазу позволяет косвенно оценивать микроциркуляцию в веществе головного мозга. Рентгенография производится в виде серий дискретных снимков с разной скоростью смены кадров, вплоть до режима кино, т.е. 25 кадров в секунду. Исследование в обычном порядке проводится в нескольких проекциях, что позволяет получить наиболее полное представление о строении сосудов, а также о локализации и распространенности, степени выраженности их поражений. Диагностический этап церебральной ангиографии включает в себя и селективное контрастирование ветвей дуги аорты, что позволяет оценить варианты и состояние магистральных и интракраниальных артерий, а также кальцинативное кровоснабжение. Современные рентгеновская диагностические аппараты оснащены рабочими станциями с соответствующим программным обеспечением, которое дает возможность выполнить прицельную обработку и анализ получаемых изображений, а также архивировать их, передавать на расстояние через локальные сети или Интернет. В случае выявления окклюзии артерии тромбом или эмболом производят смену катетеров и вводят микрофотографий. Его конец с помощью проводника устанавливают в области проксимальной границы тромбоза и начинают процедуру селективного тромболизиса.
Ведение больных после тромболитической терапии

Во время и после проведения тромболизиса чрезвычайно важен мониторинг основных жизненно-важных функций: АД, ЧСС, ЧДД, температуры тела, SaO2. Во время процедуры тромболитической терапии и по ее завершении в течение суток необходимо контролировать динамику неврологического статуса, наиболее оптимальным является использование формализованной шкалы инсульта NIH.

Краткость неврологического статуса по шкале NIH:
1. Во время проведения ТЛТ — каждые 15 минут.
2. До 24 часов после процедуры фибринолиза — каждый час.

Следует отметить необходимость тщательного исследования менингеального синдрома (ритидизм залиты мышц, скуловой симптом Бехтерева, симптомы Кернига, Бруцеллса, Мондена, Мендела и другие) при каждом осмотре больного, поскольку шкала NIH позволяет оценить только общемозговую и очаговую неврологическую симптоматику.

Необходимо тщательно контролировать уровень АД, систолическое АД не должно превышать 185 мм рт. ст., диастолическое — 110 мм рт. ст. Для снижения уровня АД применяются препараты быстрого действия с возможностью их внутривенных введений (лазарет, клонидин, нитроглицерин натрия). Повышение АД во время тромболитической терапии или после нее значительно увеличивает риск развития наиболее грозного осложнения тромболизиса — геморрагической трансформации очага ишемического поражения мозга. При стойком повышении систолического АД выше 185 мм рт. ст. и/или диастолического выше 110 мм рт. ст. во время проведения тромболизиса необходимо прекращение процедуры тромболитической терапии.

Контроль артериального давления должен осуществляться:
1. В течение 2 часов от начала ТЛТ — каждые 15 минут.
2. Следующие 6 часов — каждые 30 минут.
3. В последующее время до 24 часов — каждые 60 минут.

В случае, если во время или после проведения тромболизиса у больного наблюдается появление менингеального синдрома (в первую очередь, локальных знаков разражения мозговых оболочек — симптома Мондена, скуловой симптом Бехтерева), развитие или нарастание общемозговых симптомов (расстройства уровня сознания, головная боль, тошнота, рвота), психомоторное возбуждение, вегетативные симптомы (гиперемия лица и склер, гипергидроз), значительное усиление очаговой неврологической симптоматики, что может свидетельствовать о развитии геморрагических осложнений, необходимо прекратить введение тромболизиса, по возможности повторить КТ-исследование и в случае верификации признаков геморрагической трансформации начать введение свежезамороженной плазмы. Геморрагическая трансформация очага поражения головного мозга является симптоматой, если ее развитие приводит к увеличению суммарного балла по шкале инсульта NIH на 4 и более баллов. В большинстве случаев внутрисосудистых геморрагий после ТЛТ регистрируется формирование неизменной геморрагической трансформации, выявляемой методами КТ или МРТ, которая замедляет сопутствующее клиническому улучшению и является свидетельством рефрактерности.

При возникновении локальных геморрагий (из мест инъекций или десен (симптом "кульбка кампира")) прекращения процедуры тромболизиса не требуется, остановка кровотечения возможна путем притяжения.

До проведения процедуры ТЛТ и в течение суток после нее не следует выполнять внутрисосудистых инъекций. При необходимости установки мочевого катетера, назогастрального зонда целесообразно выполнение данных манипуляций до процедуры ТЛТ, поскольку в противном случае существует риск кровотечений из травмированных слизистых оболочек. Катетеризация центральных некомпенсированных вен (подключичной, яремной) запрещена в течение суток после ТЛТ. Не рекомендуется кормить пациентов после тромболизиса в течение 24 часов.

Сопутствующая терапия

При выраженных кровотечениях (особенно из некомпенсированных сосудов) введение тромболизиса должно быть прекращено. Показано введение свежезамороженной плазмы или свежей крови.

Запрещенные препараты

Прямые антиагреганты (гепарин) и антиагреганты (аспирин и другие препараты) должны быть назначены не ранее 24 часов от начала проведения ТЛТ, поскольку в противном случае значительно возрастает риск кровоизлияний. Больные, получавшие аспирин до тромболизиса, имеют более высокий риск развития геморрагических осложнений.

Через 24 часа после ТЛТ для исключения внутрисосудистых кровоизлияний и гематом перед назначением антиагрегантов или антиагрегантов необходимо проведение повторной КТ головного мозга (или раньше в случае клинического ухудшения).
Осложнения тромболитической терапии, их диагностика и лечение

Самой частой неблагоприятной реакцией, связанной с введением фибринолитиков, являются кровоизлияния, приводящие к снижению гематокрита и (или) гемоглобина. Выделяют следующие типы кровотечений, связанных с тромболитической терапией:

- Малые кровотечения (обычно вследствие пункции или повреждения кровеносных сосудов, из лесен);
- Большие кровотечения (в желудочно-кишечном или урогенитальном тракте, в забрюшинном пространстве, центральной нервной системе или кровотечения из перинеуматозных органов).

При лечении острого ишемического инсульта основной нежелательной реакцией ТЛТ является симптоматическое внутримозговое кровоизлияние (при использовании алте- плаза частота достигает 8-10%). В случае развития потенциально опасного кровоизлияния, особенно церебрального, лечение должно быть прекращено. Тем не менее, в целях необходимости в замещении факторов свертывания не возникает вследствие короткого периода полувыведения алте плазы и умеренного действия препарата на системные факторы коагуляции. У большинства больных с кровотечениями достаточно прекращения тромболитической и антикоагулянтной терапии, возмещения объема циркулирующей крови и осуществления мануальной компрессии крово- токущего сосуда. В тех редких случаях, когда указанные консервативные меры недостаточны, показано применение препаратов крови.

Методы нейровизуализации при проведении тромболитической терапии

Пациентам с подозрением на инсульт или ТИА в экстренном порядке должно быть проведено КТ- или МРТ-исследование головного мозга. Обычно достаточно стандартного исследования без использования контрастных соединений.

После проведенной тромболитической терапии повторные КТ- или МРТ-исследования необходимо выполнять в конце 1-x суток и, желательно, на 5-7-е сутки от начала инсульта (или раньше в случае клинического ухудшения).

Если проводится МРТ головного мозга, необходимо использовать диффузионно-взвешенные изображения (ДВИ) и T2*-взвешенные изображения (на основе градиентного эхо) – T2*-ВИ. Обычно указанных режимов достаточно для решения вопроса о проведении ТЛТ при оказании помощи в пределах терапевтического окна для данного метода лечения. Если возможно или необходимо расширение МРТ-исследования, обычно используются режимы FLAIR – Fluid Attenuated Inversion Recovery (T2-ВИ с подавлением сигнала от "свободной воды") и T1-взвешенные изображения (T1-ВИ) с контрастным усилением. В частности, подобная необходимость возникает при дифференциальной диагностике между инфарктом и различными неосудистыми поражениями мозга.

Пациентам с ТИА, малым инсультом и спонтанным регрессом симптоматики необходимо проведение в срочном порядке методов сосудистой визуализации: КТ-ангиография или МР-ангиография (МРА).

Исключение внутримозговых кровоизлияний как противопоказания к проведению тромболитической терапии

Компьютерная томография без контрастного усиления является надежным и быстрым способом для исключения различных острых внутримозговых кровоизлияний как противопоказаний к ТЛТ в первые часы инсульта.

Большинство внутримозговых кровоизлияний формируются как отграничения от вещества мозга гематомы, состоящие из струна (светка) крови и краевой зоны, которая представляет собой прослоя жидкости, образующейся за счет ретракции струна и элементов внеклеточной и цереброспинальной жидкости. Плотность струна обычно равномерна и равняется 55 – 85 ед. Хаусфейдера, но может быть более высокой при наличии полипитемии (высокая концентрация гемоглобина в крови) или более низкой при наличии анемии (низкое содержание гемоглобина в крови).

При замедленном формировании струна, обычно в течение первых часов кровоизлияния, в гематоме могут сохраняться эмблемы жидкой крови, которые визуализируются как слабопротяженные или изоденсивные участки. Обычно подобные изменения наблюдаются при крупных гематомах в их центральных отделах.

Краевая зона визуализируется как гиподенсивная полоска вокруг гиперденисивного струна, которая обычно выражена в прилегающем к гематоме белом веществе и обычно не выражена в сером веществе. Это связано с различными условиями распространения жидкости по веществу мозга – более благоприятными в белом веществе (по шелям между аксонами, проходящими в виде проводников в одном направлении) и менее благоприятными в сером веществе (разновидный ход волокон с наличием большого числа клеточных элементов).

Перифокальный (вазогенный) отек начинает визуализироваться вокруг первичной гематомы к концу первых суток заболевания, что сопровождается нарастанием положительного объемного эффекта на окружающие структуры мозга. На КТ-изображениях по показателям плотности тканей обычно не удается дифференцировать жидкость в краевой зоне и нарастающий отек мозга, поэтому определение гипоптенсивных изменений вокруг острой гематомы в первые часы заболевания только как перифокального отека является неточным.

Прорыв крови в желудочки мозга и (или) субарахноидальное пространство является дополнительным признаком внутримозгового кровоизлияния и обычно хорошо выявляется в остром периоде инсульта.

При субарахноидальных кровоизлияниях гиперденисивные струны крови хорошо видны в субарахноидальных пространствах, наиболее отчетливо – в ликворных цистернах и корковых бороздах. Жидкая кровь веноза как увеличение степени плотности церебральной жидкости в интегральных пространствах и корковых бороздах, но данные изменения при небольшой примеси крови необходимо дифференцировать с артефактами усреднения в указанных ликворных пространствах и при необходимости выполнить КТ исследование с небольшой шиновой срезом.

Дополнительными возможными признаками развития субарахноидального кровоизлияния при разрыве церебральной аневризмы является наличие крови в полости третьего желудочка или в полости прозрачной перегородки (гематома прозрачной перегородки) при отсутствии внутримозгового кровоизлияния как возможного источника кровотечения. Подобное распространение крови возможно при наличии арте-
риальной аневризмы в передних отделах виллисова круга с ранее именевшимися надгравями стенки аневризмы и развитием в связи с этим асептического воспаления в окружающих тканях с формированием общего тканевого контгломерата стенок аневризмы и желудочка. При повторном крупном разрыве аневризмы может произойти одновременное повреждение стенок желудочка или основания прозрачной перегородки с прямым распространением крови в мозговые полости. Иногда при субарахноидальном кровоизлиянии наблюдается также небольшой прямой кровь в задних рогах боковых желудочков с наличием горизонтального уровня жидкости.
Травматические и нетравматические острые субдуральные и эпидуральные гематомы в типичных случаях обычно не вызывают диагностических затруднений при использовании КТ. Определенные трудности могут возникнуть при пластинчатых субдуральных гематомах, при подозрении на их наличие необходимо уменьшить ширину срезов и при необходимости изменить угол сканирования.
Некоторые затруднения при КТ-диагностике внутричерепных кровоизлияний могут возникнуть при следующих обстоятельствах.
- Небольшие внутричерепные кровоизлияния в стволе мозга при наличии артефактов Хаусфилда, загрязняющих их выявление, особенно на томограммах с послойным сканированием. Обычно изменение параметров сканирования, в частности, угла сканирования и ширины срезов позволяет более надежно решить данный вопрос.
- Внутричерепные кровоизлияния у пациентов с выраженной анемией и низким содержанием гемоглобина в крови, что сопровождается более низким, чем обычно показательными плотностями сгустков крови, особенно при небольшом размере последних, когда возникают артефакты усиления, дополнительно затрудняющие оценку показателя коэффициента поглощения (КПП) в зонах поражения мозга, использование более толстых срезов позволяет уменьшить влияние артефактов усиления и более точно определить плотность зон поражения.
- Малое количество крови и отсутствие ее сгустков в ликворных пространствах при субарахноидальном кровоизлиянии; при подозрении на наличие последнего и ограничительных данных КТ показана люмбальная пункция, что исключает дальнейшее проведение ТЛГ.
- Вторичные кровоизлияния в опухоль или зоны воспалительного поражения мозга; при указанных первичных неосложненных поражениях, как правило, имеются признаки парционального (вазогенного) отека мозга, который по отношению к инсультоподобному эпизоду является преморбидным и обычно хорошо выраженным уже в первые часы после развития данного эпизода; как правило, отмечается также достаточно выраженный эффект объемного воздействия на структуры мозга, что нехарактерно для первых часов неосложненного инфаркта мозга. Для вторичных кровоизлияний характерны также полиморфизм изменений плотности и локализация зон поражения.
- В редких случаях в первые часы инфаркта мозга могут развиться геморрагическая трансформация, при которой отмечаются КТ-признаки наличия крови в зонах поражения, но в отличие от вторичных кровоизлияний в участки несосудистого поражения мозга в первые часы инсульта не наблюдается вазогенного отека и выраженного эффекта объемного воздействия на структуры мозга.

К концу первых суток заболевания дифференциально-диагностическая значимость признаков наличия перифокального отека и выраженности объемного эффекта на структуры мозга снижается, особенно это характерно для венозных инфарктов мозга, которые обычно протекают с ранней и выраженной геморрагической трансформацией и ранним развитием объемного эффекта на перифокальные структуры, которые связаны с венозным застоем и последующим ранним развитием вазогенного (гидростатического) отека мозга. Дифференциальная диагностика между геморрагическим венозным инфарктом и вторичным кровоизлиянием в опухоль или зону воспалительных изменений вещества мозга весьма сложна при однородном КТ-изображении в остром периоде заболевания. Для уточнения диагноза часто требуется повторное КТ- или МРТ-исследование, а также контрастное усиление и ангиографическое исследование венозной системы мозга.
При МРТ-исследовании наиболее надежным признаком острого внутричерепного кровоизлияния является снижение интенсивности сигнала (гипоинтенсивные изменения) в зоне поражения на T2*-ВИ. Данный эффект связан с увеличением содержания магнитного соединения – лекоксигемоглобина в зоне кровоизлияния, начиная с первых часов развития наследного, но с максимальной выраженностью данного эффекта лишь на 3-й день заболевания. Существенное значение имеет сила поля томографа – достаточно надежная диагностика кровоизлияний по данному эффекту возможна только на высокополном томографа, на среднем и тем более низкополном установках гипоинтенсивный эффект в первые часы кровоизлияния выявляется недостаточно надежно и не может использоваться для исключения последнего у пациентов с инсультом при решении вопроса о проведении тромболитической терапии.
Подострые и хронические внутричерепные кровоизлияния более точно и надежно, по сравнению с КТ, диагностируются методами МРТ, в частности, при помощи T1-ВИ и T2*-ВИ.

Ранние КТ признаки ишемического инсульта
Достаточно длительное время существовала мнение о низких возможностях КТ при диагностике ИИ в ранние сроки его развития – до 24 часов с момента появления нейрологических симптомов. Однако, с внедрением в клиническую практику системного тромболизиса был проведен более тщательный анализ КТ-изменений при остром ИИ и на основании этого выделятся ряд признаков, которые могут выявляться уже в первые часы развития инсульта. К таким ранним признакам относятся: снижение диффузии между серым и белым веществом головного мозга, объемное воздействие на ликворные пространства разной степени выраженности, снижение контрастной плотности вещества мозга различной локализации в зависимости от бассейна пораженного сосуда, повышение гиперинтенсивных участков по ходу церебральных сосудов.
Влияние слабой выраженности подобных КТ-признаков в ранние сроки ИИ, многие авторы обращают внимание на многочисленные ошибки, возникающие при трактовке результатов КТ-исследования как специалистами по визуализирующим методам, так и, в особенности, с ними врачами, работающими с этими больными, включающими рентгенологов без опыта анализа КТ-изображений. Обучение распознаванию ранних КТ-признаком ишемических изменений позволяет улучшить диагностику в остром периоде инсульта.
В качестве отдельных ранних КТ-признаков ишемического инсульта обычно выделяются:

1. Гиподенсивные изменения вещества мозга (данний признак отражает развитие цитотоксического отека, к которому впоследствии присоединяется водянистый отек — подобное сочетание определяется как ишемический отек мозга). Весьма важной характеристикой является величина участка поражения, с учетом этого выделяют поражение менее 1/3 зоны васкуляризации средней мозговой артерии и равное или более 1/3 этой зоны. Как правило, наличие гиподенсивных изменений величиной более 1/3 зоны васкуляризации средней мозговой артерии свидетельствует о развитии обширного инфаркта мозга и коррелирует с низкой эффективностью системной ТЛТ и низкой степенью функционального восстановления.

2. Утрата обычного контраста по плотности между серым и белым веществом мозга, что отражает несколько более быстрое нарастание цитотоксического отека в сером веществе мозга по сравнению с белым. Повышение содержания воды при отеке серого вещества вызывает снижение его плотности и в связи с этим утрату естественного контраста с белым веществом. Данные изменения могут наблюдаться в конвекситальной коре мозга, в области головки и тела хвостатого ядра, в области лентикулярного ядра.

3. Положительный объемный эффект в виде сдавления ликворных пространств мозга. Появление объемного эффекта связано с развитием ишемического отека мозга, независимо от роли увеличения кровенаполнения в участках поражения, что обычно отмечается в зоне лензумбры. В первые часы инсульта объемный эффект выявляется в виде сужения конвекситальных корковых борозд и утраты ребристого вида коры острова, сдавление желудочков мозга развивается обычное позже. Сдавление корковых борозд может быть первым признаком ишемического поражения мозга и может не сопровождаться заметным снижением плотности или утратой ткани контраста серого и белого вещества.

4. При наличии тромба или эмбола в церебральном сосуде плотность последнего повышается, что выявляется на КТ-изображениях как гиперденисивный крупного сосудистого ствола, обычна супракранионального отдела внутренней сонной или основного отдела средней мозговой артерии. Подобные изменения в M2 и M3 сегментах средней мозговой артерии определяются как «симптом точки». При оценке данных сосудистых признаков возможны локальный и диффузный характеры, что может быть связано с исходными склеротическими изменениями сосудов, повышением гематокрита, а также сопутствующими заболеваниями: геморрагической энцефалитом, полицитемией. Однако, в этих случаях гиперденисность ствола средней мозговой артерии обычно наблюдается с двух сторон.

5. В редких случаях в первые часы инсульта развивается геморрагическая трансформация в зоне инфаркта мозга. Различают два вида геморрагической трансформации: по типу геморрагического пропитывания (небольшие участки, либо выраженные сливающиеся кровоизлияния — подтип 1 и 2 соответственно) и геморрагическая трансформация по типу внутримозовой гематомы (подтип 1 — гематома менее 30% от объема инфаркта с умеренным объемным эффек- том и подтип 2 — гематома, занимающая более 30% объема очага поражения со значительным объемным эффектом или гематома, удаленная от основной зоны инфаркта мозга). Часто геморрагическая трансформация развивается по типу пропитывания, реже — по типу гематомы.

КТ-признаки, связанные с развитием ишемического отека, имеют тенденцию к нарастанию частоты в более поздние промежутки времени наблюдения в течение первых суток инсульта, причем в каждой временной группе лидируют признаки, связанные с объемным эффектом на структуры мозга и с утратой контраста между серым и белым веществом. Признаки, связанные с патологическими изменениями в сосудах мозга, встречаются реже признаков первой группы и имеют неопределенную динамику с тенденцией к уменьшению частоты регистрации в течение первых двух суток ишемического инсульта. Но данные сосудистые признаки носить высокую специфичность, что определит их большее диагностическое значение в первые часы инсульта.

Визуализация ишемических изменений на КТ в течение первых часов от развития неврологических расстройств возможна у 2/3 пациентов со среднетяжелым и тяжелым инсультом, но у больных с малым инсультом в первые часы заболевания она возможна не более чем в половине случаев.

Продолжается изучение возможного прогностического значения ранних КТ-признаков ишемического инсульта. В настоящее время нет достаточного основания для оценки каких-либо из этих признаков как противопоказания к проведению ТЛТ. В то же время некоторые из них, в частности, указывают на возможно большую размер раннего ишемического поражения мозга (гиподенсивные изменения более 1/3 зоны васкуляризации средней мозговой артерии, раньше развитие положительного объемного эффекта, признаки окклюзии супракранионального отдела внутренней сонной и проксимального отдела ствола средней мозговой артерии) коррелируют с более высокой частотой развития геморрагической трансформации. Но подобные отношения обусловлены случайной зоной поражения и наблюдаются также при лечении ишемического инсульта без использования тромболитических препаратов. Частота геморрагической трансформации, выявляемой с помощью КТ у больных с ишемическим инсультом, по данным разных авторов составляет от 13 до 43%.

Для унификации количественной оценки ранних КТ-изменений мозга у пациентов с острым ИИ в бассейне средней мозговой артерии J. Pexman и соавт. (2001) предложили специальную шкалу — ASPECTS (The Alberta Stroke Program Early CT Score). Показатель ASPECTS определяется на двух стандартных аксиальных КТ срезах: первый — на уровне таламуса и базальных ядер, второй — над верхним краем базальных узлов. Территория кровоснабжения СМА подразделяется на 10 участков. Эти зоны включают: субкортикальные структуры — хвостатое ядро, лентикулярное ядро, внутреннюю капсулу (только колено и заднее бедро); корковые территории кровоснабжения СМА, разделенные на 7 участков коры мозга, включая островок. При оценке каждой области, за 1 считаются участки неизмененного вещества мозга, за 0 — признаки участков с видимыми ранними ишемическими изменениями. Таким образом, для КТ изображений в норме ASPECTS = 10, при поражении всей территории кровоснабжения средней мозговой артерии ASPECTS = 0. В каждой
из 10 зон определяются такие ранние признаки ишемического поражения как гиподенсивность, утрата контраста между серым и белым веществом, слаженность корковых борозд. Получены предварительные данные о том, что пороговым значением является величина 7, если оценка по ASPECTS равна или меньше 7, риск геморрагической трансформации, летального исхода и плохого функционального восстановления заметно выше, чем при оценке 8 и больше.

Ранние МРТ признаки ишемического инсульта

Магнитно-резонансная томография с ДВИ является наиболее чувствительным методом диагностики ранних ишемических изменений в веществе мозга, что особенно актуально при диагностике инсультов в вертебро-базилярном бассейне, лакунарных и небольших корковых очагах. На ДВИ участки цитотоксического отека, соответствующие развивающемуся острому инфаркту мозга, выявляются как гиперинтенсивные изменения, что связано с ухудшением возможности диффузии молекул воды внутри клеток и уменьшением объема висцерального пространства, в котором условия для диффузии молекул воды более благоприятны.

Возможна количественная оценка указанных изменений по величине циркулярного коэффициента диффузии. Как правило, снижение величины данного коэффициента свидетельствует о необратимом характере повреждения вещества мозга, но при незначительном его снижении измененная ткань может восстановиться. Следует также учитывать, что ухудшение диффузии, выявляемое при помощи циркулярного коэффициента диффузии, не является строго специфическим признаком ишемического повреждения мозга и встречается при некоторых других заболеваниях.

Другие режимы МРТ (T2-ВИ, FLAIR, T1-ВИ) не обладают достаточной чувствительностью для определения ранних признаков ишемии головного мозга.

KT- и МР-перфузия и ангиография

Оценка перфузии вещества мозга с помощью KT и МРТ дает дополнительную информацию о состоянии периферальной гемодинамики, но эти показатели в первые часы инсульта еще недостаточно изучены, в частности, существуют разные взгляды на то, как лучше идентифицировать необратимое повреждение вещества мозга и определить критически сниженный мозговой кровоток (зону пенаумбры). Но дальнейшее изучение несоответствий между объемом мозгового вещества с критической гипоперфузиею (который может восстановиться после реперфузионной терапии) и объемом инфаркта мозга (который нельзя восстановить даже с помощью реперфузии) перспективно для расширения границ терапевтического окна и прогнозирования эффективности тромболитической терапии при остром ишемическом инсульте.

Сосудистая визуализация (KT- и МР-ангиография) позволяет определить место и причину окклюзии и выявить пациентов с высоким риском повторного инсульта. Имеются определенные закономерности в эффективности ТЛП при различных вариантах поражения сосудов мозга. Так, у пациентов с транзитной окклюзией внутренней сонной и средней мозговой артерий меньше шансов для эффективного системного тромболизиса, чем у пациентов с изолированной окклюзией средней мозговой артерии. При выявлении окклюзии артерии на интракраниальном уровне может быть проведен внутриартериальный тромболизис.

Сосудистая визуализация у пациентов с ТИА, малым инсультом и хорошим спонтанным обратным развитием неврологической симптоматики должна проводиться в кратчайшие сроки для выявления окклюзии и значимого стеноза артерий с целью последующего проведения этим пациентам эндартерэктомии или ангиопластики.

Имеющиеся данные свидетельствуют, что наиболее чувствительным и специфичным неинвазивным методом визуализации каротидной системы является контрастная МР-ангиография, затем следуют ультразвуковое дуплексное сканирование и KT-ангиография; неконтрастная МР-ангиография обладает наименьшей достоверностью.

Ультразвуковое «сопровождение» в острейшем периоде ишемического инсульта

Для определения наличия, характера и выраженности структурных изменений сосудов головного мозга у больного с инсультом, а также оценки состояния потоков в их просветах должно проводиться комплексное ультразвуковое исследование с использованием ультразвукового дуплексного сканирования (ДС) экстракраниальных отделов брахицифальных артерий (БЦА) и транскраниального дуплексного сканирования (ТКДС) — интракраниальных.

Осуществление оценочных обследований показано всем больным с клинической картиной ОНМК в сроки не более 3 часов с момента поступления в стационар, при этом чем меньше временной интервал между моментами диагностического ультразвукового исследования и развития клинических симптомов, тем больший объем информации, пригодной для корректной интерпретации, может быть получен. Противопоказаний к проведению ДС и ТКДС не существует.

ДС БЦА и ТКДС как правило проводятся с использованием стационарных специализированных ультразвуковых кардиоваскулярных систем, оснащенных технологиями высокоскоростной серошляховой визуализации, режимами цветового допплеровского коэффициента допплеровского сдвига частоты, зоне скорости, интенсивности — «энергии», а также спектральным допплеровским режимом (при возможности — конвергентного ЦДК). Сканеры должны быть укомплектованы линейными электронными многочастотными широкополосными датчиками с частотой от 4 до 8-9 МГц с апертурой от 38 до 42 мм, а также секторными (или векторными) электронными многочастотными широкополосными датчиками с частотой от 1 до 3 МГц; программами применений для исследований сонных и позвоночных артерий, а также транскраниального дуплексного сканирования и транскранальной экокардиографии.

Ультразвуковую систему следует располагать непосредственно в отделении для больных с острыми нарушениями мозгового кровообращения. При значительной загруженности кларнета для исследований в реабилитационном отделении, а также необходимости постоянного перемещения его, повышающей риск поломки прибора в отделении нейроанестезиологии рекомендуется использовать портативные ультразвуковые кардиоваскулярные дуплексные ультразвуковые системы с характеристиками, аналогичными вышеуказанным. Последние рекомендуется распол-
лагать в отделениях нейрогимназии и использовать у постели больного.

Протокол диагностического ультразвукового исследования сосудистой системы головного мозга у больных с инсультом включает оценку состояния экстрракраниальных отделов ВСА и интракраниальных артерий и вен, а также глазных (надбюлковых) артерий. Сокращение указанного объема, за исключением случаев с выраженными височными акустическими дномией либо его отсутствием, является необоснованным.

Диагностическая процедура может быть начата сразу после помещения больного в отделение нейрогимназии. В случаях планируемой медикаментозной рефлекции предпочитительно, чтобы она было проведено до введения тромболитика либо в самом начале инфузии.

Методика проведения ультразвукового сканирования не отличается от традиционной и включает изучение состояния дистального отдела шееглотского ствола (БЦС), проксимальных сегментов подключичных (ПКА), общих сонных артерий (ОСА) на всем протяжении, шейных порций внутренних сонных артерий (ВСА) — от устья до ворот, наружных сонных артерий (НСА) в проксимальном отделе, позвоночных артерий (ПА) в сегментах V1, V2 и V4, интракраниальной части (верхненазальная и мозговая порция, включая нейтрофилы в сегментах С1-СV) ВСА, средних (СМА), передних (ПМА) и задних (ЗМА) мозговых артерий в сегментах M1 и M2, A1 и A2, а также P1 и P2 соответственно, основной артерии, вен Розенталя и (или) вена Галена, прямого сипуса, надбюлковых или глазных артерий. Сначала осуществляется ориентировочное сканирование с определением состояния стенок (экстрракраниальных отделов БЦС) и пороков в местах наиболее частой локализации поражений (каротидная бифуркация и просвет ВСА, устья ПА, интракраниальные отделы ВСА, M1 и M2 сегменты СМА), после чего — детальное изучение по направлению от проксимальных к дистальным сегментам сосудистого русла. Рекомендуется первоначально оценивать состояние на стороне, противоположной поражению (при латерализации поражения), затем — инсептально. По итогам диагностического исследования создается описательный протокол. Длительность одной процедуры по указанному протоколу может составлять от 15 до 60 минут и более, в связи с чем при решении о применении тромболитической терапии исследование выполняется параллельно ее проведению, а результаты ее не влияют на определение показаний (противопоказаний) к ТЛТ.

Основной задачей ДС БЦС и ТКДС у больных с инсультом является получение информации, позволяющей подтвердить патогенетический вариант (при ишемическом инсульте), верифицировать наличие и выраженность ангиопатии (при геморрагическом инсульте, а также геморрагической трансформации ишемических очагов), определить круг объективных изменений, участие которых в развитии ОНМК может рассматриваться как возможное. Последнее особенно важно с точки зрения проведения тактики вторичной профилактики и дальнейшем.

У больных с ИИ при проведении ДС и ТКДС наиболее часто выявляют эхо-графические признаки атеросклеротического поражения (изолированного, сочетанного; трансцендулярного, эндоцелевого) БЦС в сочетании с экхосцинами, специфическими для артериальной гипертонии, регула — тромбозы или эмболии. Лица с ИИ достоверно отличаются от адекватной половой возрастной асимметрии популяции по степени выраженной атеросклеротической поражения сонных артерий (u больных с ИИ она в среднем несколько выше), эхогенностью атеросклеротических бляшек (АСБ) (для больных с ИИ более выражены гипофизокомпоненты АСБ), контуrom АСБ (так ИИ достоверно чаще встречается яркий контур), наличии осложнений АСБ (при ИИ — кровоизлияния в матрикс, нарушения целостности покрышка, инсульта, атеротромбоз встречается чаще). В то же время все перечисленные особенности не являются специфичными по отношению к сосуду, кровоснабжающему бассейн, в котором развился ИИ и могут иметь место на контралатеральной стороне либо в артериях других зон. Частота высоких (>70% по диаметру) стеноэоз в субпункциях лиц с ИИ обычно не превышает 5-10%, подавляющее большинство АСБ обусловливает незначительную (<50% по диаметру) или промежуточную (50%<70% по диаметру) стену редукции просветов ВСА. Деформация ВСА выявляется более чем в 90% случаев лиц с ИИ, но при ассоциации с текущими сосудистыми событиями может рассматриваться лишь в редких (менее 1%) случаях осложнений деформации (перегиб, септальный стеноз). Количество макроэмболов и эмболий не превышает 5-7%. Все вышеперечисленное справедливо исключительно для экстрракраниальных отделов БЦС, причем в большей степени сонных артерий, где качество визуализации позволяет оценить соответствующие характеристики сосудистой стенки и внутрипросветных образований. При ТКДС все получаемые сведения являются косвенными и не носят качественного характера в связи с невозможностью визуализации стеноэоз и окклюзий сосудов. У лиц с ИИ наиболее часто выявляются признаки стеноэоза СМА, ПМА, ПА, ЗМА, ОА, ВСА (С1-СV сегменты), а также их окклюзии. Кроме того, могут быть зарегистрированы вторичные изменения потоков, отражающие поражения мелких ветвей, а также являющиеся результатом индуцированных вазомоторных артериальных (не обязательно сосудистых) процессов, резонирующих разнонаправленными колебаниями уровня кровотока в интракраниальных сосудах.

В неясных ситуациях, а также с целью осуществления дифференциальной диагностики проводятся дополнительные исследования, т.е. дистанционное ультразвуковое мониторирование. Это может касаться уточнения природы внутрипросветных образований и их изменений (часть происходящих в сжатые сроки, особенно у больных ТЛТ), а также ряда других ситуаций.

Контроль за гемодинамической способностью ТЛТ целесообразно проводить с использованием транскраниального допплеровского мониторирования (ТДМ) показателей потоков в интракраниальных сосудах, обычно — билатерального на симметричных участках одноименных артерий в режиме микrozоблотометрении. С одной стороны, это позволяет зафиксировать изменения кровотока, которые наблюдаются при рекапилляризации пораженного сосуда, с другой — определить наличие выраженной и распространенности микрозоблотомии в сосудах головного мозга. Для осуществления подобных манипуляций необходимо оснащение отдельного мониторирующей двум-четырехканальной допплеровской системой, располагаемой непосредственно в нейрогимназии или реабилитационном отделении. Прибор должен быть укомплектован мониторирующими датчиками, программными обеспечением для мониторирования, наиболее доступными и удовлетворительными зондами, датчиками — держателями датчиков. ТДМ рекомендуется проводить всем больным во время системной ТЛТ, а при необходимости и селективной ТЛТ (для этого могут быть использованы бентисофонные шлемы специальной конструкции).
ции). Противопоказаний к осуществлению ТКДМ не существует; ограничения использования методики связаны с незначительной выраженностью (полным отсутствием) акустических «окон» (что наблюдается не чаще чем в 6-8% случаев).

ТКДМ осуществляется в тех сосудах, поражение которых с наибольшей вероятностью приводит к развитию имеющей место очаговой симптоматики, а при наличии признаков ишемического повреждения на КТ — кровоснабжающих участках мозга, где описанные признаки локализуются.

Непосредственными гемодинамическими эффектами ТЛТ, которые могут быть зафиксированы при ТКДМ во время ее осуществления, являются:
1) появление признаков наличия кровотока в просвете сосуда (допплеровского спектра потока) при его исходном отсутствии;
2) усиление кровотока в случае его снижения до начала ТЛТ;
3) нормализация (обычно — снижение повышенных в начале лечения) низкоскоростных допплеровских характеристик (уровня периферического сопротивления);
4) исчезновение (или уменьшение выраженности) признаков сброса крови в ветви артерии, расположенные проксимальнее места локализации препятствия, а также коллатералей по естественным анастомозам;
5) появление комбинации изменений, характерного для стеноза сосуда (локального гемодинамического перепада) в месте редуцированного потока до проведения ТЛТ;
6) усиление потока различной степени выраженности вне зависимости от уровня фонового, иногда со снижением уровня периферического сопротивления;
7) преходящая или постоянная микроэмболия в бассейне пораженного сосуда разной интенсивности;
8) разнонаправленные изменения кровотока (чистовиде периодов снижения вплоть до полного исчезновения и увеличения, в ряде случаев — выше границ, значимых для диагностики ангиоспазма, в том числе высоких градаций);
9) прогрессивное снижение скоростных показателей кровотока в просвете пораженного сосуда;
10) отсутствие каких — либо изменений фоновых характеристик потока.

Интерпретация результатов ТКДМ и сведений, полученных при ДС и ТКДС, осуществляется с учетом клинических данных (результатов повторных исследований неврологического статуса). Как правило, прямые (1,2) и косвенные (4,5) признаки успешности ТЛТ сопутствуют частичному или полному регрессу клинической симптоматики. Однако следует иметь в виду, что в ряде случаев подобных взаимосвязей не наблюдается. Так, очевидное клиническое улучшение может не сопровождаться изменениями допплеровских характеристик кровотока и наоборот, восстановление кровотока, зарегистрированное при ТКДМ, не приводит к уменьшению выраженности неврологической симптоматики.

Интерпретация результатов комплексного ультразвукового исследования требует специальной подготовки и опыта проведения подобных процедур у больных с инсультом. Это связано с часто встречающимися несоответствиями между данными ультразвуковых исследований и клинической картиной и ее динамикой, а также гетерогенностью инсульта как полифакторного состояния.

Все описанные виды ультразвуковых исследований должны проводиться и интерпретироваться сертифицированными специалистами ультразвуковой или функциональной диагностики, имеющими подготовку по вопросам исследований больных с ОНМК, осуществляющими круглосуточные дежурства в отделениях для больных с острыми нарушениями мозгового кровообращения.

При необходимости (подозрение на наличие патологии сердца, других органов, доступных ультразвуковому исследованию) в условиях отделения нейрореанимации перед началом ТЛТ, либо в момент ее проведения, могут осуществляться другие виды ультразвуковых исследований, если их проведение позволяет комплексная картина, а также квалификация дежурного врача.
Приложение

Шкала инсульта Национального института здоровья (NIH)
(Brott T., Adams H.P., 1989).
Максимальное количество баллов – 42. Отсутствие неврологического дефицита соответствует 0 баллов.

1а. Уровень сознания. Исследователь должен выставить соответствующий балл, даже если оценка затруднена вследствие наличия интубационной трубки, языкового барьера, оротрахеальной травмы, повязки. При балле выступает только в том случае, когда в ответ на болевой стимула у пациента не возникает двигательных реакций (исключение – защитные рефлексы). Задайте пациенту два или три общих вопроса возможно обстоятельства его поступления в стационар. Оценивайте на полученных ответах, оцените результаты. Помните, что не следует помогать пациенту.
0 = ясное сознание, пациент реагирует на осмотр незамедлительно
1 = отсутствие, при легком стимулировании пациент реагирует на осмотр
2 = сопор, требуется повторные стимуляции пациента для ответной реакции, или при отсутствии эффекта необходимо проводить более интенсивную стимуляцию с целью получения нестероидного двигательного ответа
3 = кома, ответная реакция только в виде рефлекторных двигательных актов либо самопроизвольные двигательные акты, либо полное отсутствие реакции со стороны пациента, атония, арефлексия.

1б. Уровень сознания. Вопросы. Спросите у пациента: «Какой сейчас месяц? Сколько Вам лет?» Близкие, но неверные ответы не засчитываются. Пациенты с афазией и/или снижением уровня бодрствования, которые не могут правильно ответить на два поставленных вопроса, получат 2 балла. Пациенты, которые не могут говорить и всередине эндотрахеальной интубации, оротрахеальной травмы, тяжелой дайпазии, ввиду языкового барьера, либо по другим причинам (кроме афазии) получат 1 балл. Засчитывается только первая попытка, не допускается вербальная и не-вербальная помощь со стороны врача.
0 = правильный ответ на два вопроса
1 = правильный ответ на один вопрос
2 = ни на один вопрос не дан правильный ответ

1с. Уровень сознания. Выполнение команд. Необходимо попросить пациента закрыть и открыть глаз, сжать кисть непаретичной руки в кулак, а затем разжать. Если для оценки данного пункта не может быть использована рука пациента, то можно заменить данную команду другой. Если пациент не может выполнить команду, то задание может быть продемонстрировано ему. Пациенты с травмой, ампутацией или другим физическим дефектом должны быть оценины при помощи одной шаговой команды. Засчитывается только первая попытка. Вопросы задаются также только один раз.
0 = обе команды выполнены правильно
1 = одна команда выполнена верно
2 = ни одна команда не выполнена правильно

2. Движения глазных яблок. Учитывается только горизонтальные движения глазных яблок. Оценивается самостоятельная или рефлекторная (окулоцефальный рефлекс) движения глазных яблок. Проведение калорического теста не допускается. Если у пациента имеется сопровождающее отведение глазных яблок, которое пациент может самостоятельно преодолеть, либо при помощи вызывания окулоцефального рефлектора, выставляется 1 балл. В случае наличия у пациента изолированного переконечного глазного яблока, иннервируемого III, IV или VI парами черепных нервов, выставляется 1 балл. Движения глазных яблок должны исследоваться у всех пациентов, в том числе у больных с афазией. Пациенты с травмой глазного яблока, повязкой, предшествующей слепотой или другими расстройствами сетчатки или поджожных зон должны быть обследованы при помощи вызывания окулоцефального рефлекса. С целью выявления частичного переконечного глаза вздрожжено рекомендуется установить зрительный контакт со стороны пациента и походить из стороны в сторону относительно пациента.
0 = норма
1 = частичный переконечный вздрожжение, преодолеваемый пациентом либо при помощи вызывания окулоцефального рефлекса
2 = тоническое отведение глазных яблок, не преодолеваемое вызыванием окулоцефального рефлекса

3. Поля зрения. Поля зрения (верхние и нижние квадранты) исследуются отдельно. При необходимости может использоваться счёт пальцев или другие виды сопоставления в поле зрения пациента зрительного стимула (палец исследователя). Во время проведения тестирования пациент должен смотреть в лицо исследователя, однако, если он следит за движением пальцев, это может оцениваться как нормальная положительная реакция. При наличии односторонней слепоты или злокачественной полезализации, поля зрения оцениваются в хорошем глазу. Поля зрения проверяются в виде верхнее- или нижне-квадрантной гемианопсии выставляется 1 балл. В случае слепоты пациента в каком-либо другом месте выставляется 2 балла. Также должна быть выполнена синхронная двусторонняя стимуляция. Если в результате выявляются различия (уменьшение поля зрения в сторону больного глаза), выставляется 1 балл и результаты теста используются для ответа на вопрос № 11. Два балла соответствуют случаям полной гемианопсии, а наличие какого-либо частичного нарушения поля зрения, включая квадрантную гемианопсию, соответствует 1 баллу.
0 = норма
1 = частичная гемианопсия
2 = полная гемианопсия
3 = билатеральная гемианопсия (слепота, включая корковую)

4. Паттер парез мускулатуры. Используя вербальные и невербальные приемы, попросите пациента показать зубы, поднять брови, закрыть глаза, зажмурить глаза. Допускается демонстрация данных команд врачом. Оцените симметричность больной гимнастики в ответ на дыхательный стимул у пациентов, которые не могут Вас понять. В случае наличия побуждений на лице, оротрахеальной интубации или других барьеров они должны быть удалены (насколько это возможно) на время оценки.
0 = норма
1 = минимальный парез, асимметрия лица в виде сглаженности носогубной складки, асимметрия при улыбке
2 = частичный паралич (частичный или полный паралич нижней мимической мускулатуры)
3 = полный паралич нижней и верхней мимической мускулатуры с одной или 2-х сторон (полное отсутствие движений в верхней и нижней мимической мускулатуре)

5а. Движения в верхних конечностях (левая рука). Конечности больного должны быть установлены в следующем положении: вытянуть руки (ладонями вниз) под углом 90 градусов (если пациент сидит) или 45 градусов (если пациент лежит на спине). Конечность оценивается по очереди, начиная с пальцев в руке. Допускается демонстрация выполнения приема врачом у пациентов с афазией. Не допускается нанесение болевых стимулов. В случае ампутации конечности или перелома плюсневого сустава, исследователь должен выставить в соответствующей графе UN (untestable). Четко считайте вслух до десяти и демонстрируйте счет на пальцах, чтобы пациент это видел. Начинайте считать, как только отпустите конечность пациента.

0 = конечность удерживается под углом 90 или 45 градусов в течение 10 секунд без малейшего опускания
1 = конечность опускается в течение 10 секунд, но не касается постели или другой опоры
2 = конечности не могут сохранить поднятное положение (опускаются на постель или другую опору в течение 10 секунд), но производит некоторое сопротивление силе тяжести
3 = конечности падают без сопротивления силе тяжести, имеются минимальные движения
4 = нет активных движений в конечности
UN = ампутация конечности или повреждение плюсневого сустава

5б. Движения в верхних конечностях (правая рука).

6а. Движения в нижних конечностях (левая нога). Конечности устанавливаются в соответствующем положении: под углом 30 градусов в положении лежа на спине. Допускается демонстрация приема врача у пациентов с афазией. Нанесение болевых стимулов не допускается. Каждая конечность оценивается по очереди, начиная с пальцев ноги в руке. Точно считайте вслух до пяти и демонстрируйте счет на пальцах, чтобы пациент это видел. Начинайте считать, как только отпустите конечность пациента.

0 = конечность удерживается в течение 5 секунд под углом 30 градусов без малейшего опускания
1 = конечность опускается в течение 5 секунд, но не касается постели или другой опоры
2 = конечности не могут сохранить поднятное положение (опускаются на постель или другую опору в течение 5 секунд), но производит некоторое сопротивление силе тяжести
3 = конечности падают без сопротивления силе тяжести, имеются минимальные движения
4 = нет активных движений в конечности
UN = ампутация конечности или повреждение плюсневого сустава

6б. Движения в нижних конечностях (правая нога).

7. Атаксии конечностей. Оцениваются односторонние мозжечковые симптомы. Тест проводится с открытыми глазами. В случае наличия какого-либо дефекта зрения проводите тестирование в ненарушенном поле зрения. Атаксия будет отсутствовать у пациента, который не понимает, что от него требуется или парализован. В случае повреждения суставов или ампутации конечности выставляется UN (untestable). Попросите больного выполнить пальцы-носонку, пальцы-пальцевую и пальто-пальцевую пробу обеими конечностями. В случае слепоты необходимо исключить пальцы-пальцевую пробу. Пациент с афазией часто будет способен выполнить тест нормально, если перед этим исследователь поднимет конечность пациента.

0 = симптомы атаксии отсутствуют
1 = симптомы атаксии присутствуют в 1 конечности
2 = симптомы атаксии присутствуют в 2 конечностях

8. Чувствительные нарушения. Учитываются только снижение чувствительности, обусловленное новаторским заболеванием. Исследователь должен подтвердить тестируя как можно больше участков тела пациента (лицо; руки, кроме кистей; ноги, кроме стоп; голова). У пациентов в сопоре или с афазией выставляется 1 балл, у больных с инсультом в ствое мозга и билатеральными нарушениями чувствительности — 2 балла. Если пациент не реагирует на внешние раздражители и имеет тетраплегию, то выставляются 2 балла, так же как и при нарушении уровня сознания до комы.

0 = нет неврологических нарушений
1 = умеренное снижение чувствительности; с пораженной стороны пациент ощущает несильно укол будильник или тупую боль от укола
2 = сильная или полная потеря чувствительности; пациент не ощущает прикосновения в области лица, рук и ног

9. Афазия. Пациента просит описать прилагаемую картинку, перечислить изображенные на ней предметы и прочесть предложения из прилагаемого списка. В случае слепоты пациента, он должен назвать предметы, взяв их в руку, повторить что-либо за исследователем или сказать что-либо самостоятельно. Интегрированного пациента следует просить отвечать письменно. При всех этих случаях отвечать на вопросы, пациент с афазией оценивается в 1 балл. Для правильного выбора между 1 и 2 баллами используйте предложенные материалы; предполагается, что пациент, пропустивший более 2/3 предложенных для этого предметов или выполнивший небольшое количество простых команд, получит 2 балла. В случае коматозного состояния выставляется 3 балла.
0 = нет афазии
1 = легкая или умеренная афазия
2 = тяжелая афазия
3 = тяжелая афазия

10. Дизартрия. Если состояние больного оценивается как нормальное, он должен быть способен адекватно разговаривать, отвечая на просьбу исследователя прочесть что-либо или повторить слова из прилагаемого списка. В случае наблюдения у пациента признаков тяжелой афазии, четкость артикуляции оценивается в процессе спонтанной речи. Только если пациент интубирован или существует какое-либо другое физическое препятствие речи, состояние пациента оценивается 9 баллами и исследователь должен предоставить четкое письменное объяснение причины невозможности оценить состояние больного. Не сообщайте пациенту причину проведения его/ее тестирования.

Комментарий:
Для тестирования всех пациентов используйте предлагаемый список слов и не сообщайте им, что вы проводите тест проверки ясности речи. Как правило, при негативном произношении одного или нескольких слов такое состояние оценивается как нормальное. Ноль баллов выставляется пациентам, которые читают все слова внятно. Пациенты, страдающие афазией или те, кто не читает, оцениваются на основании качества их спонтанной речи или повторения произносимых исследователем всех слов. Два балла ставят в тех случаях, когда пациент совершенно невозможно понять или пациентам, которые молчат.

0 = норма
1 = дизартрия от слабой до умеренной; пациент нечетко произносит как минимум несколько слов; в худшем случае, произносимые им слова можно понять с трудом.
2 = сильная дизартрия; речь пациента настолько невнятна, что не воспринимается вовсе при отсутствии или непропорционально имеющейся афазии; или пациент молчит (не способен изъясняться членораздельно).
3 = пациент интубирован или присутствует какая-либо другая физическая преграда, препятствующая способности говорить.

11. Угнетение восприятия или невнимание (ранее использовали термин «игнорирование»). Для выявления игнорирования (нейнмания) достаточно информации, полученной в ходе выполнения предыдущих тестов. Если в силу тяжелого нарушения зрения у пациента одновременная двусторонняя визуальная стимуляция проведена быть не может, но реакции на кожные стимулы нормальная, то его состояние оценивается как нормальное. Если у пациента афазия, но, по всем признакам, он внимательно смотрит за голосом с двух сторон, то его состояние оценивается как нормальное. Наличие зрительного пространственного игнорирования, или анонознозия, расценивается как патология. Поскольку патология оценивается в баллах только в случае ее наличия, данный пункт тестируется всегда.

Комментарий:
Можно предположить, что при оценке этого пункта возможна значительная вариация мнений исследователей, т.к. все неврологи используют несколько различающихся методов для тестирования игнорирования. Поэтому, в целях повышения достоверности исследования проводите только двустороннюю одновременную стимуляцию на визуальные и тактильные стимулы. При одностороннем игнорировании стимулов обеих модальностей оценивайте невнимание как 2, а при одностороннем игнорировании стимула одной модальности — как 1. Если пациент в сознании, но демонстрирует какой-либо другой ярко-выраженный тип игнорирования, оценивайте уровень невнимания как 1.
Приложение 2

Приказ Минздравсоцразвития России № 389н от 6 июля 2009 г.
Об утверждении Порядка оказания медицинской помощи больным с острыми нарушениями мозгового кровообращения

Зарегистрировано в Минюсте 23 июля 2009, № 14399

В соответствии со статьей 37.1 Основ законодательства Российской Федерации об охране здоровья граждан от 22 июля 1993 г. № 5487-1 (Ведомости Съезда народных депутатов Российской Федерации и Верховного Совета Российской Федерации, 1993, № 33, ст. 1318; Собрание законодательства Российской Федерации, 2007, № 1, ст. 21) приказываю:

1. Утвердить:
Порядок оказания медицинской помощи больным с острыми нарушениями мозгового кровообращения согласно приложению.

2. Ввести в действие настоящий приказ на территории субъектов Российской Федерации: Республика Башкортостан; Республика Карелия; Чувашская Республика; Алтайский край; Красноярский край; Ставропольский край; Белгородская область; Воронежская область; Ивановская область; Иркутская область; Сахалинская область; Свердловская область; Республика Коми; Республика Мордовия; Удмуртская Республика; Архангельская область; Курская область; Орловская область; Ростовская область; Рязанская область; Самарская область; Смоленская область; Ульяновская область.

3. Рекомендовать органам управления здравоохранением субъектов Российской Федерации, не указанным в пункте 2 настоящего приказа, использовать настоящий приказ при организации оказания медицинской помощи больным с острыми нарушениями мозгового кровообращения.

Министр Т.А. Голикова

Приложение к приказу Министерства здравоохранения и социального развития Российской Федерации от 6 июля 2009 г. № 389н

Порядок оказания медицинской помощи больным с острыми нарушениями мозгового кровообращения

1. Настоящий Порядок регулирует вопросы оказания медицинской помощи больным с острыми нарушениями мозгового кровообращения в Российской Федерации.

2. Для целей настоящего Порядка, к острым нарушениям мозгового кровообращения (далее — ОНМК) относятся состояния, соответствующие шифрам I 60 — I 64, G 45 — G 46 Международной статистической классификации болезней и проблем, связанных со здоровьем (десятий пересмотр) (далее — МКБ — 10).

3. Оказание медицинской помощи больным с острыми нарушениями мозгового кровообращения осуществляется в рамках последовательного процесса, начинаяющегося на догоспитальном этапе, который продолжается в лечебно-профилактических учреждениях (далее — ЛПУ) в стационарных условиях, далее — в амбулаторно-поликлинических учреждениях, в том числе восстановительного лечения, центрах восстановительной медицины и реабилитации, медицинской и социальной реабилитации, санаторно-курортных учреждениях.

4. Оказание медицинской помощи больным с ОНМК на догоспитальном этапе осуществляется бригадами скорой медицинской помощи (врачебной или фельдшерской) (далее — СМП) и включает коррекцию жизненно важных функций, проведение, при необходимости, реанимационных мероприятий и обеспечение транспортировки больного в экстренном порядке в ЛПУ, имеющее в структуре неврологическое отделение для больных с острыми нарушениями мозгового кровообращения (далее — Отделение).

Медицинскому персоналу бригад СМП рекомендуется проходить повышение квалификации по вопросам диагностики и оказания неотложной помощи больным с ОНМК.

5. Больные с признаками ОНМК при поступлении в Отделение в экстренном порядке осматриваются дежурным врачом, который:
- оценивает жизненно важные функции (при наличии медицинских показаний осуществляет их коррекцию), общее состояние больного и неврологический статус в специально выделенном помещении;
- организует выполнение электрокардиографии (далее — ЭКГ), забор крови для определения количества тромбоцитов, содержания глюкозы в периферической крови, международного нормализованного отношения (далее — МНО), активированного частичного тромбопластинового времени (далее — АЧТВ).
6. Определение содержания тромбоцитов, глюкозы в периферической крови, МНО, АЧТВ производится в течение 20 минут от момента забора крови, после чего результат передается дежурному врачу Отделения.

7. После осмотра больные с признаками ОНМК направляются в отделение лучевой диагностики (кабинет компьютерной томографии), где осуществляется проведение компьютерной томографии (далее — КТ) или высокоинтенсивной магнитно-резонансной томографии (далее — МРТ) головного мозга для установления диагноза.

Заключение специалиста, проводившего одно из указанных в абзаце первом настоящего пункта исследования, передается дежурному врачу Отделения.

8. Время от момента поступления больного с признаками ОНМК в Отделение до получения врачом Отделения результатов КТ или МРТ головного мозга и исследований крови составляет не более 40 минут.

9. При подтверждении диагноза ОНМК больные госпитализируются в блок интенсивной терапии и реанимации Отделения (далее — БИТР).

10. Больным, у которых по данным КТ установлены признаки геморрагического инсульта, проводится консультация нейрохирурга, после чего принимается решение о тактике лечения.

11. Длительность пребывания больного с ОНМК в БИТРе определяется тяжестью состояния больного, но не может быть менее 24 часов, необходимых для определения патогенетического варианта ОНМК, тактики ведения и вторичной профилактики.

12. В БИТР в течение 3 часов с момента поступления всем больным с ОНМК проводится:

— оценка неврологического и соматического статуса;
— дуплексное сканирование экстракраниальных отделов брахиоцефальных сосудов;
— дуплексное сканирование транскраниальное;
— определение тактики ведения.

13. В БИТР в течение всего срока пребывания всем больным с ОНМК проводится:

— мониторирование неврологического статуса;
— мониторирование соматического статуса, включающего контроль за функцией сердечно-сосудистой, дыхательной системы и системы гомеостаза.

14. При наличии медицинских показаний в БИТРе больному с ОНМК проводится:

— транскраниальная микротомография;
— транскраниальное допплеровское мониторирование;
— эхокардиография трансторакальная.

15. В случае необходимости проведения больному с ОНМК искусственной вентиляции легких длительностью более 7 суток, при наличии сопутствующей патологии, влияющей на тяжесть состояния, больной по решению врачебного консилиума, состоящего из заместителя главного врача ЛПУ по медицинской части, заведующего Отделением, лечающего врача, заведующего или врача отделения реанимации и интенсивной терапии (не менее трех человек), переводится в отделение интенсивной терапии и реанимации ЛПУ.

16. Мероприятия по предупреждению развития повторного ОНМК начинаются не позднее 3 суток с момента развития ОНМК и включают медикаментозную и хирургическую (при наличии показаний) профилактику.

Медикаментозная профилактика продолжается непрерывно после выписки из стационара под наблюдением медицинских работников учреждений здравоохранения.

17. Специализированная хирургическая помощь, в том числе высокотехнологичная, больным с ОНМК может оказываться в ЛПУ на базе которого организовано Отделение, при условии наличия лицензии и специалистов соответствующего профиля, специалистами ведомственной бригады ЛПУ субъекта Российской Федерации. При наличии медицинских показаний больной с ОНМК переводится в профильное отделение ЛПУ субъекта Российской Федерации.

18. Комплекс мероприятий, направленных на восстановление нарушенных вследствие ОНМК функций нервной системы, проводится бригадой специалистов Отделения, включающей врачей лечебной физкультуры, врачей восстановительной медицины, врачей по физиотерапии, логопеда, инструктора по лечебной физкультуре, медицинского психолога, социального работника и, при наличии медицинских показаний, инъекций специалистов, начинается с первого дня госпитализации и продолжается после выписки из Отделения в амбулаторно-поликлинических учреждениях восстановительного лечения, центрах восстановительной медицины и реабилитации, медицинской социальной реабилитации.

19. По окончании срока стационарного лечения в Отделении, предусмотренном стандартами медицинской помощи при состояниях, отнесенных к ОНМК, дальнейшие тактики ведения и реабилитации больного с ОНМК определяются врачебным консилиумом в составе заведующего Отделением, лечащего врача, бригады специалистов, участвовавших в восстановлении нарушенных вследствие ОНМК функций нервной системы, с записью в медицинской карте стационарного больного.

20. При определении учреждения здравоохранения для дальнейшего лечения и реабилитации больного с ОНМК рекомендуется:

— направлять на дневное и поликлиническое учреждение в амбулаторно-поликлинические учреждения (поликлиники городские, центральные районные, физиотерапевтические, восстановительные), включая областные, в течение не менее 8-10 санаторий, где могут быть направлены к самостоятельной деятельности или с дополнительными средствами опоры (не менее 8 баллов по шкале мобилизации Ривермайда).
- направлять на дневное и реабилитацию в санаторно-курортные учреждения, центры, в том числе научно-практические (патологии речи и нейрореабилитации, реабилитации, лечебной физкультуры и спортивной медицины, восстановительной медицины и реабилитации, медицинской и социальной реабилитации) больных после ОНМК, способных к активному поддержанию вертикального положения и самостоятельному передвижению, самообслуживанию, с уврением физических, умственных и психических способностей, соответствующих положительным прогнозам восстановления, передвигающихся с дополнительными средствами опоры и активно в коляске (не менее 4 баллов по шкале мобильности Ривермайда);

- направлять в отделения реабилитации больничных учреждений (городские, районные, центральные городские, центральные районные, областные, краевые, республиканские, окружные больницы), специализированные больницы восстановительного лечения, курортные больницы больных после ОНМК со значительными нарушениями двигательных и/или когнитивных, психических функций, передвигающихся только в коляске и требующих помощи при самообслуживании (менее 4 баллов по шкале активности Ривермайда);

- направлять в специализированные больничные учреждения (терапевтические, дома больницы) сестринского ухода, хосписы или выписывать домой под наблюдение медицинского работника по месту жительства больных после ОНМК со значительными нарушениями двигательных и/или когнитивных, психических функций, самостоятельно не передвигающихся и требующих постоянного ухода (1 балл и меньше по шкале мобильности Ривермайда).

Приложение № 1
к Порядку оказания медицинской помощи больным с острыми нарушениями мозгового кровообращения
к приказу Министерства здравоохранения и социального развития Российской Федерации
от 6 июля 2009 г. № 389н

Положение об организации деятельности неврологического отделения для больных с острыми нарушениями мозгового кровообращения

1. Настоящее Положение регулирует вопросы организации деятельности неврологического отделения для больных с острыми нарушениями мозгового кровообращения (далее — ОНМК) с блоком интенсивной терапии и реанимации (далее — Отделение).

2. Отделение организуется в лечебно-профилактическом учреждении (далее — ЛПУ) федерального подчинения, ЛПУ субъекта Российской Федерации, муниципального образования с учетом численности населения из рекомендуемого расчета 30 коек на 200 тысяч населения с учетом географической доступности (максимальное время доставки больного в Отделение должно составлять, как правило, не более 40 минут), при условии наличия в нем круглогодично функционирующих:

- отделения лучевой диагностики с кабинетом компьютерной томографии
- отделения функциональной и ультразвуковой диагностики;
- отделения лабораторной диагностики;
- операционной для проведения экстренных операций больным с ОНМК в соответствии со стандартами медицинской помощи при состояниях, относящихся к ОНМК.

3. По решению руководителя ЛПУ блок интенсивной терапии и реанимации для больных с ОНМК может быть выделен в качестве самостоятельного структурного подразделения ЛПУ.

4. Отделение организует и назначает, назначаемый на должности и освобождаемый от должности руководителем ЛПУ, на базе которого создано Отделение.

5. На должность заведующего Отделением назначается врач-невролог, прошедший повышение квалификации по вопросам интенсивной терапии и реанимации, новым технологиям диагностики, лечения и профилактики острых нарушений мозгового кровообращения (далее — ОНМК).

Над должность заведующего блоком интенсивной терапии и реанимации для больных с ОНМК (в случае выделения его в качестве самостоятельного структурного подразделения ЛПУ) рекомендуется назначать врача-невролога или врача-анестезиолога-реаниматолога, прошедших повышение квалификации по вопросам интенсивной терапии и реанимации, новым технологиям диагностики, лечения и профилактики ОНМК.
6. Отделение осуществляет следующие функции:
а) оказание специализированной медицинской помощи больным с ОНМК в круглосуточном режиме, в соответствии со стандартами медицинской помощи, включающее:
— клиническую оценку состояния больного с ОНМК;
— оценку состояния и мониторинг жизненно важных функций больного с ОНМК, включая нервные функции, состояние сердечно-сосудистой системы ультразвуковыми и электрофизиологическими методами;
— интенсивную терапию и реанимацию в условиях блока интенсивной терапии и реанимации (далее — БИТР), включающую коррекцию нарушений жизненно важных функций (дыхательной, сердечно-сосудистой);
— проведение комплексной терапии больному с ОНМК, направленной на восстановление нарушенных функций бригадой специалистов, в том числе интенсивную терапию, бытовую реабилитацию, физиотерапию, медико-психологическую, педагогическую (включая логопедическую), медико-социальную помощь;
— составление алгоритма и проведение мероприятий по предупреждению развития повторного ОНМК;
б) освоение и внедрение в клиническую практику современных методов диагностики и лечения ОНМК и профилактики осложнений на основе принципов доказательной медицины и научно-технических достижений;
в) разработку и внедрение мероприятий, направленных на повышение качества лечебно-диагностической работы в Отделении и снижение болезненности и летальности от ОНМК;
г) консультирование персонала ЛПУ по вопросам неотложной медицинской помощи и экстренной диагностики при неотложных состояниях и заболеваниях нервной системы и органов кровообращения;
д) проведение работы с пациентами и их родственниками по предупреждению и коррекции модифицируемых факторов риска сосудистых заболеваний, ведению здорового образа жизни;
е) ведение учетной и отчетной документации и представление отчетов о деятельности Отделения в установленном порядке, сбор данных для регистров, ведение которых предусмотрено законодательством.
7. В состав Отделения включают БИТР составляющий не менее 20% коекного фонда Отделения;
Отделение для обеспечения своей деятельности может по согласованию с руководителем ЛПУ использовать возможности лечебно-диагностических и вспомогательных подразделений ЛПУ, в составе которого оно организовано.
8. В БИТР госпитализируются больные со всеми типами ОНМК в остром периоде заболевания, в том числе транзиторными ишемическими атаками.
9. Отделение включает помещения в соответствии с рекомендуемым перечнем предусмотренным приложением № 2 к Порядку оказания медицинской помощи больным с острыми нарушениями мозгового кровообращения, утвержденным настоящим Приказом.
10. Отделение оснащается материально-техническими средствами в соответствии со стандартом оснащения, установленным в приложении № 3 к Порядку оказания медицинской помощи больным с острыми нарушениями мозгового кровообращения, утвержденному настоящим Приказом.
11. Штатная численность медицинского и другого персонала Отделения утверждается руководителем ЛПУ с учетом рекомендуемых штатных нормативов медицинского и иного персонала согласно приложению № 2 к Порядку оказания медицинской помощи больным с острыми нарушениями мозгового кровообращения, утвержденному настоящим Приказом.
Рекомендуемый перечень помещений отделения для больных с острыми нарушениями мозгового кровообращения

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование помещения</th>
<th>Количество помещений</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Блок интенсивной терапии и реанимации</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Палата интенсивной терапии</td>
<td>По требованию</td>
</tr>
<tr>
<td>2</td>
<td>Комната для временного хранения аппаратуры и оборудования</td>
<td>По требованию</td>
</tr>
<tr>
<td>3</td>
<td>Кабинет врачей</td>
<td>По требованию</td>
</tr>
<tr>
<td>4</td>
<td>Помещение (пост) медицинской сестры</td>
<td>1 на 8 коек</td>
</tr>
<tr>
<td>5</td>
<td>Процедурная</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Комната личной гигиены персонала</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Помещение для уборочного инвентаря и приготовления дезрастворов</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Помещение сортировки и временного хранения гризного белья</td>
<td>По требованию</td>
</tr>
<tr>
<td>9</td>
<td>Для мытья и стерилизации суден, мытья и сушки клеенок</td>
<td>По требованию</td>
</tr>
<tr>
<td>II Отделение</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Палата</td>
<td>По требованию</td>
</tr>
<tr>
<td>2</td>
<td>Палата для больных, передвигающихся с помощью инвалидных колясок</td>
<td>По требованию</td>
</tr>
<tr>
<td>3</td>
<td>Кабинет заведующего отделением</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Комната старшей медицинской сестры</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Кабинет врачей</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Помещение (пост) медицинской сестры</td>
<td>1 на 12 коек</td>
</tr>
<tr>
<td>7</td>
<td>Процедурная</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Комната сестры-хозяйки</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Буфетная</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Кабинет лечебной физкультуры для индивидуальных занятий</td>
<td>1 на 12 коек</td>
</tr>
</tbody>
</table>

Примечание:
В случае организации блока интенсивной терапии и реанимации в качестве самостоятельного структурного подразделения лечебно-профилактического учреждения (отделения интенсивной терапии и реанимации для больных с острыми нарушениями мозгового кровообращения) дополнительно предусматривается: кабинет заведующего отделением, комната старшей медицинской сестры, комната сестры-хозяйки, кабинет врачей, комната для временного хранения аппаратуры и оборудования.
Стандарт оснащения неврологического отделения для больных с острыми нарушениями мозгового кровообращения

1. Стандарт оснащения блока интенсивной терапии и реанимации неврологического отделения для больных с острыми нарушениями мозгового кровообращения

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование помещения</th>
<th>Количество единиц</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Функциональная кровать с боковыми спинками, трехсекционная</td>
<td>по числу коек</td>
</tr>
<tr>
<td>2</td>
<td>Прикроватный столик</td>
<td>по числу коек</td>
</tr>
<tr>
<td>3</td>
<td>Прикроватная тумба</td>
<td>по числу коек</td>
</tr>
<tr>
<td>4</td>
<td>Кресло-туалет</td>
<td>по числу коек</td>
</tr>
<tr>
<td>5</td>
<td>Прикроватная информационная доска (маркерная)</td>
<td>по числу коек</td>
</tr>
<tr>
<td>6</td>
<td>Противоположный матрас</td>
<td>по числу коек</td>
</tr>
<tr>
<td>7</td>
<td>Одежда для наружного охлаждения</td>
<td>1 шт. на 2 койки</td>
</tr>
<tr>
<td>8</td>
<td>Матрас для наружного охлаждения</td>
<td>1 шт. на 2 койки</td>
</tr>
<tr>
<td>9</td>
<td>Наборы для мягкой фиксации конечностей</td>
<td>по числу коек</td>
</tr>
<tr>
<td>10</td>
<td>Ширина 3 секционная</td>
<td>1 шт. на 2 койки</td>
</tr>
<tr>
<td>11</td>
<td>Тележка для перевозки больных с гидроподъемником</td>
<td>не менее 2 шт.</td>
</tr>
<tr>
<td>12</td>
<td>Тележка грузовая межкорпусная</td>
<td>не менее 1 шт.</td>
</tr>
<tr>
<td>13</td>
<td>Штатив медицинский (инфузионная стойка)</td>
<td>не менее 2 шт. на 1 койку</td>
</tr>
</tbody>
</table>

II. Аппараты и приборы

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование</th>
<th>Количество</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Монитор больного: частота дыхания, пульсоксиметрия, ЭКГ, неинвазивное АД, температура</td>
<td>не менее 3 шт. на 6 коек</td>
</tr>
<tr>
<td>2</td>
<td>Монитор больного: частота дыхания, пульсоксиметрия, капномерия, ЭКГ, неинвазивное АД, температура, анализ ST-сегмента</td>
<td>не менее 2 шт. на 6 коек</td>
</tr>
<tr>
<td>3</td>
<td>Монитор больного с расширенными возможностями оценки гемодинамики и дыхания: респирометра, пульсоксиметрия, капномерия, неинвазивное и инвазивное АД, температура, ЭКГ, анализ ST-сегмента, сердечного выброса с автоматическим включением сигнала тревоги, возможностью автономной работы</td>
<td>не менее 1 шт. на 6 коек</td>
</tr>
<tr>
<td>4</td>
<td>Портативный электрокардиограф с возможностью автономной работы</td>
<td>1 шт.</td>
</tr>
<tr>
<td>5</td>
<td>Центральная станция мониторирования гемодинамики и дыхания</td>
<td>1 шт.</td>
</tr>
<tr>
<td>6</td>
<td>Многофункциональная система ультразвуковой допплерографии с возможностью выполнения транскраниальной допплерографии, детального транскраниального допплеровского мониторирования, микрозембологезации</td>
<td>1 шт.</td>
</tr>
<tr>
<td>7</td>
<td>Портативный ультразвуковой сканер, с датчиками для проведения ультразвукового дуплексного сканирования экстракраниальных отделов брахикоцеральных артерий, транскраниального дуплексного сканирования, транскраниальной эхокардиографии</td>
<td>1 шт.</td>
</tr>
<tr>
<td>8</td>
<td>Компьютерный эритроплазиметр с возможностью длительного мониторирования электроэнцефалограммы и вызванных потенциалов</td>
<td>1 шт.</td>
</tr>
<tr>
<td>9</td>
<td>Глюкометр</td>
<td>не менее 2 шт.</td>
</tr>
<tr>
<td>10</td>
<td>Весы для взвешивания лежачих больных</td>
<td>1 шт. на 6 коек</td>
</tr>
<tr>
<td>11</td>
<td>Вакуумный электроотсосатель</td>
<td>1 шт. на 2 койки</td>
</tr>
<tr>
<td>12</td>
<td>Ингалятор</td>
<td>1 шт. на 3 койки</td>
</tr>
<tr>
<td>13</td>
<td>Дефибриллятор с функцией синхронизации</td>
<td>не менее 1 шт. на 3 койки</td>
</tr>
<tr>
<td>14</td>
<td>Аппарат для искусственной вентиляции легких экспертного класса</td>
<td>не менее 1 шт. на 3 койки</td>
</tr>
<tr>
<td>15</td>
<td>Аппарат для неинвазивной вентиляции легких</td>
<td>не менее 1 шт. на 3 койки</td>
</tr>
<tr>
<td>16</td>
<td>Аппарат искусственной вентиляции легких портативный транспортный</td>
<td>не менее 1 шт.</td>
</tr>
<tr>
<td>17</td>
<td>Ротаметр с увлажнителем</td>
<td>1 шт. на койку</td>
</tr>
<tr>
<td>18</td>
<td>Манометр для определения давления в манжете эндотрахеальной трубки</td>
<td>1 шт.</td>
</tr>
<tr>
<td>19</td>
<td>Пульсоксиметр портативный</td>
<td>не менее 3 шт.</td>
</tr>
<tr>
<td>№</td>
<td>Наименование должностей</td>
<td>Количество ставок при работе круглосуточно</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Заведующий отделением — врач невролог</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Старшая медицинская сестра</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Сестра-хозяйка</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Врач-кардиолог</td>
<td>0,5 на 30 коек</td>
</tr>
<tr>
<td>5</td>
<td>Врач-психиатр</td>
<td>0,5 на 30 коек (может находиться в другом отделении)</td>
</tr>
<tr>
<td>6</td>
<td>Врач функциональной диагностики</td>
<td>1 круглосуточный пост на 30 коек</td>
</tr>
<tr>
<td>7</td>
<td>Врач ультразвуковой диагностики</td>
<td>1 круглосуточный пост на 30 коек</td>
</tr>
</tbody>
</table>

1 Блок интенсивной терапии и реанимации

<table>
<thead>
<tr>
<th>№</th>
<th>Наименование должностей</th>
<th>Количество ставок при работе круглосуточно</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Врач-невролог</td>
<td>0,5 круглосуточный пост на 6 коек</td>
</tr>
<tr>
<td>2</td>
<td>Врач-анестезиолог-реаниматолог</td>
<td>0,5 круглосуточный пост на 6 коек</td>
</tr>
<tr>
<td>3</td>
<td>Врач по лечебной физкультуре</td>
<td>0,5 на 6 коек</td>
</tr>
<tr>
<td>4</td>
<td>Врач восстановительной медицины</td>
<td>0,5 на 6 коек</td>
</tr>
<tr>
<td>5</td>
<td>Врач — физиотерапевт</td>
<td>0,5 на 6 коек</td>
</tr>
<tr>
<td>6</td>
<td>Логопед</td>
<td>0,25 на 6 коек</td>
</tr>
<tr>
<td>7</td>
<td>Медицинская сестра постовая</td>
<td>1 круглосуточный пост на 3 койки</td>
</tr>
<tr>
<td>8</td>
<td>Медицинская сестра палитная</td>
<td>1 на 3 койки</td>
</tr>
<tr>
<td>9</td>
<td>Медицинская сестра процедурной</td>
<td>0,5 на 6 коек</td>
</tr>
<tr>
<td>10</td>
<td>Медицинская сестра по физиотерапии</td>
<td>0,5 на 6 коек</td>
</tr>
<tr>
<td>11</td>
<td>Медицинская сестра по массажу</td>
<td>0,5 на 6 коек</td>
</tr>
<tr>
<td>12</td>
<td>Младшая медицинская сестра по уходу за больными</td>
<td>1 круглосуточный пост на 6 коек</td>
</tr>
<tr>
<td>13</td>
<td>Санитарка</td>
<td>2</td>
</tr>
</tbody>
</table>
II Отделение

<table>
<thead>
<tr>
<th>Должность</th>
<th>Количество ставок</th>
</tr>
</thead>
<tbody>
<tr>
<td>Врач-невролог</td>
<td>0,25 круглосуточный пост на 12 коеч</td>
</tr>
<tr>
<td>Врач ультразвуковой диагностики</td>
<td>0,25 круглосуточный пост на 12 коеч</td>
</tr>
<tr>
<td>Врач-невролог</td>
<td>0,75 круглосуточный пост на 6 коеч</td>
</tr>
<tr>
<td>Врач-анестезиолог-реаниматолог</td>
<td>0,25 круглосуточный пост на 6 коеч</td>
</tr>
<tr>
<td>Врач по лечебной физиотерапии</td>
<td>0,5 на 6 коеч</td>
</tr>
<tr>
<td>Врач-физиотерапевт</td>
<td>0,5 на 6 коеч</td>
</tr>
<tr>
<td>Врач восстановительной медицины</td>
<td>0,5 на 6 коеч</td>
</tr>
<tr>
<td>Логопед</td>
<td>0,25 на 6 коеч</td>
</tr>
<tr>
<td>Медицинская сестра постная</td>
<td>1 круглосуточный пост на 3 койки</td>
</tr>
<tr>
<td>Медицинская сестра палатная</td>
<td>1 на 3 койки</td>
</tr>
<tr>
<td>Медицинская сестра процедурной</td>
<td>0,5 на 6 коеч</td>
</tr>
<tr>
<td>Медицинская сестра по массажу</td>
<td>0,5 на 6 коеч</td>
</tr>
<tr>
<td>Младшая медицинская сестра по уходу за больными</td>
<td>1 круглосуточный пост на 12 коеч</td>
</tr>
<tr>
<td>Сестринка</td>
<td>2</td>
</tr>
</tbody>
</table>

3. Рекомендуемые штатные нормативы отделения для больных с острыми нарушениями мозгового кровообращения (в случае, если блок интенсивной терапии и реанимации организован в качестве самостоятельного структурного подразделения ЛПУ)

<table>
<thead>
<tr>
<th>Наименование должностей</th>
<th>Количество ставок при работе круглосуточно</th>
</tr>
</thead>
<tbody>
<tr>
<td>Заведующий отделением — врач невролог</td>
<td>1</td>
</tr>
<tr>
<td>Старшая медицинская сестра</td>
<td>1</td>
</tr>
<tr>
<td>Сестра-хозяйка</td>
<td>1</td>
</tr>
<tr>
<td>Врач-кардиолог</td>
<td>0,25 на 24 койки</td>
</tr>
<tr>
<td>Врач-психиатр</td>
<td>0,25 на 24 койки (может находиться в другом отделении)</td>
</tr>
<tr>
<td>Врач функциональной диагностики</td>
<td>1 круглосуточный пост на 24 койки</td>
</tr>
<tr>
<td>Врач ультразвуковой диагностики</td>
<td>1 круглосуточный пост на 24 койки</td>
</tr>
<tr>
<td>Врач-невролог</td>
<td>1 круглосуточный пост на 24-48 коеч</td>
</tr>
<tr>
<td>Врач-левролог</td>
<td>1 на 12 коеч</td>
</tr>
<tr>
<td>Врач по лечебной физиотерапии</td>
<td>1 на 12 коеч</td>
</tr>
<tr>
<td>Врач-физиотерапевт</td>
<td>1 на 12 коеч</td>
</tr>
<tr>
<td>Врач восстановительной медицины</td>
<td>1 на 12 коеч</td>
</tr>
</tbody>
</table>

"2. Рекомендуемые штатные нормативы отделения интенсивной терапии и реанимации для больных с острыми нарушениями мозгового кровообращения (в случае, если выделение его в качестве самостоятельного структурного подразделения ЛПУ)"
Врач рефлексотерапевт
0,5 на 30 коек

Логопед
1 на 20 коек

Медицинский психолог
1 на 20 коек

Медицинская сестра палатная
1 на 12 коек

Медицинская сестра постовая
1 круглосуточный пост на 12 коек

Медицинская сестра процедурной
1 на 30 коек

Медицинская сестра по физиотерапии
1 на 12 коек

Медицинская сестра по массажу
1 на 12 коек

Инструктор-методист по лечебной физкультуре
1 на 12 коек

Инструктор по трудовой терапии
1 на 30 коек

Социальный работник
1 на 20 коек

Младшая медицинская сестра по уходу за больными
1 круглосуточный пост на 12 коек

Санитарка
7 на 30 коек

Санитарка-уборщица (пакальная)
1 круглосуточный пост на 30 коек при 2-степенной системе обслуживания больных

Литература

4. Werner Hacke, MD; Markku Kaste, MD; Cesare Fieschi, MD; Danilo Toni, MD; Emmanuel Lesaffre, PhD; Rudiger von Kummer, MD; Gudrun Boysen, MD; Erich Bluhmki, BSC; Godelherd Hloxter, BSc; Marie-Helene Mahagne, MD; Michael Hemmerici, MD; for the ECASS Study Group. Intravenous Thrombolysis With Recombinant Tissue Plasminogen Activator for Acute Hemispheric Stroke The European Cooperative Acute Stroke Study (ECASS). JAMA, October 4, 1995 — Vol 274, No 13.
6. Wayne M. Clark, MD; Stanley Wissman, MD; Gregory W. Albers, MD; Jack H. Jhamandas, MD, PhD; Kenneth P. Madden, MD, PhD; Scott Hamilton, PhD; for the ATLANTIS Study Investigators. Recombinant Tissue-Type Plasminogen Activator (Alteplase) for Ischemic Stroke 3 to 5 Hours After Symptom Onset. The ATLANTIS Study: A Randomized Controlled Trial. JAMA, 1999;282:2019-2026.